Experimental and Nonlinear Analysis of Cracking in Concrete Arch Dams Due to Seismic Uplift Pressure Variations

Document Type : Original Article


1 Civil Engineering Department, University of Babylon, Babylon, Iraq

2 Civil Engineering Department, Iraq University College, Basrah, Iraq


Cracked concrete arch dam’s behavior due to moderate earthquake magnitude and water pressure variation was investigated. Plain concrete was used to cast the dam’s models with 45 Mpa design strength. A shake table has been planned, manufactured, and built to create a dynamic testing facility. The experimental work was included testing of four scaled-down concrete arch dams’ models, which is divided into two groups, each group contains two different degrees of curvature models. An artificial crack was made at the center of the dam’s body. The extended finite element method (XFEM) is outlined in order to address the numerical predicate for the propagation of a crack. The results showed that a good behavior of all arch dams under moderate earthquake intensity. The arch dam with a higher degree of curvature was recorded 17.8% and 16.2% low displacement at Z and X-direction respectively, stress evaluation and crack propagation in comparison with the arch dam owns the lowest degree of curvature. Hence, increasing the degree of curvature led to raising the stability of the dam, earthquake resistance, less displacement, and less growth of tensile cracks.


1.     Marche, C., and Robert, B., "Dam Failure Risk: Its Definition and Impact on Safety Assessment of Dam Structures", Journal of Decision Systems, Vol. 11, Nos. 3–4, (2002), 513–534. doi:10.3166/jds.11.513-534
2.     Hartford, D. N. D., and Baecher, G. B., Risk and Uncertainty in Dam Safety, (2004) Thomas Telford Publishing. doi:10.1680/rauids.32705
3.     Patsialis, T., Kougias, I., Kazakis, N., Theodossiou, N., and Droege, P., "Supporting Renewables’ Penetration in Remote Areas through the Transformation of Non-Powered Dams", Energies, Vol. 9, No. 12, (2016), 1–14. doi:10.3390/en9121054
4.     Jabbar Mizhir Alfatlawi, T., Jawad Kadhim, M., and Noori Hussein, M., "Relation between cracks behavior and curvature in cracked concrete arch dam under earthquake", Materials Today: Proceedings, (In Press), (2021). doi:10.1016/j.matpr.2021.02.248
5.     Chen, Q., Zou, Y. H., Tang, M., and He, C. R., "Modelling the construction of a high embankment dam", KSCE Journal of Civil Engineering, Vol. 18, No. 1, (2014), 93–102. doi:10.1007/s12205-014-0180-4
6.     McManamay, R. A., Oigbokie, C. O., Kao, S.-C., and Bevelhimer, M. S., "Classification of US Hydropower Dams by their Modes of Operation", River Research and Applications, Vol. 32, No. 7, (2016), 1450–1468. doi:10.1002/rra.3004
7.     Lin, P., Guan, J., Peng, H., and Shi, J., "Horizontal cracking and crack repair analysis of a super high arch dam based on fracture toughness", Engineering Failure Analysis, Vol. 97, (2019), 72–90. doi:10.1016/j.engfailanal.2019.01.036
8.     Javanmard, M., Amiri, F., and Safavi, S., "Instrumentation Readings versus Numerical Analysis of Taham Dam", International Journal of Engineering, Transaction A: Basics, Vol. 32, No. 1, (2019), 28–35. doi:10.5829/ije.2019.32.01a.04
9.     Malm, R., Hellgren, R., and Enzell, J., "Lessons Learned Regarding Cracking of a Concrete Arch Dam Due to Seasonal Temperature Variations", Infrastructures, Vol. 5, No. 2, (2020), 1–18. doi:10.3390/infrastructures5020019
10.   Mohammadi, M., Samani, H., and Monadi, M., "Optimal Design and Benefit/Cost Analysis of Reservoir Dams by Genetic Algorithms Case Study: Sonateh Dam, Kordistan Province, Iran", International Journal of Engineering, Transaction A: Basics, Vol. 29, No. 4, (2016), 482–489. doi:10.5829/idosi.ije.2016.29.04a.06
11.   Karabulut, M., Kartal, M. E., Capar, O. F., and Cavusli, M., "Earthquake analysis of concrete arch dams considering elastic foundation effects", Disaster Science and Engineering, Vol. 2, No. 2, (2016), 46–52
12.   Alves, S. W., and Hall, J. F., "Generation of spatially nonuniform ground motion for nonlinear analysis of a concrete arch dam", Earthquake Engineering & Structural Dynamics, Vol. 35, No. 11, (2006), 1339–1357. doi:10.1002/eqe.576
13.   Chopra, A. K., "Earthquake Analysis of Arch Dams: Factors to Be Considered", Journal of Structural Engineering, Vol. 138, No. 2, (2012), 205–214. doi:10.1061/(ASCE)ST.1943-541X.0000431
14.   Atici, U., Ersoy, A., and Ozturk, B., "Application of destruction specific energy for characterisation of concrete paving blocks", Magazine of Concrete Research, Vol. 61, No. 3, (2009), 193–199. doi:10.1680/macr.2007.00113
15.   Boggs, H. L., Tarbox, G. S., and Jansen, R. B., "Arch Dam Design and Analysis", Advanced Dam Engineering for Design, Construction, and Rehabilitation, (1988), 493–539. doi:10.1007/978-1-4613-0857-7_17
16.   Xu, Q., Zhang, T., Chen, J., Li, J., and Li, C., "The influence of reinforcement strengthening on seismic response and index correlation for high arch dams by endurance time analysis method", Structures, Vol. 32, (2021), 355–379. doi:10.1016/j.istruc.2021.03.007
17.   Jonker, M., and Espandar, R., "Evaluation of Existing Arch Dam Design Criteria in Lieu of ANCOLD Guidelines", ANCOLD 2008 Conference, Australia, (2014), 1–15.
18.   US Army Corps of Engineers, ENGINEER MANUAL, No. 1110-2-2200Engineering and Design: Gravity Dam Design, (1995)
19.   Ghafoori, Y., Design and Static Analysis of Arch Dam Using Software SAP2000, Master Thesis No.: 33/II.GR, University of Ljubljana, Slovenia, (2016).
20.   Shokrieh, M. M., and Askari, A., "Similitude Study of Impacted Composite Laminates under Buckling Loading", Journal of Engineering Mechanics, Vol. 139, No. 10, (2013), 1334–1340. doi:10.1061/(ASCE)EM.1943-7889.0000560
21.   Altunisik, A. C., Kalkan, E., and Basaga, H. B., "Structural behavior of arch dams considering experimentally validated prototype model using similitude and scaling laws", Computers and Concrete, Vol. 22, No. 1, (2018), 101–116. doi:https://doi.org/10.12989/cac.2018.22.1.101
22.   Federal Energy Regulatory Commission, Engineering guidelines for the evaluation of hydropower projects. Chapter 11-Arch Dams. Washington DC, 20426, (1999), 11–18.
23.   Kenan, H., and Azeloğlu, O., "Design of scaled down model of a tower crane mast by using similitude theory", Engineering Structures, Vol. 220, (2020), 110985. doi:10.1016/j.engstruct.2020.110985
24.   Xie, W., and Sun, L., "Experimental and numerical verification on effects of inelastic tower links on transverse seismic response of tower of bridge full model", Engineering Structures, Vol. 182, (2019), 344–362. doi:10.1016/j.engstruct.2018.12.046
25.   Harris, H., "Use of Structural Models as an Alternative to Full-Scale Testing", Full-Scale Load Testing of Structures, ASTM International, (2009) 25–44. doi:10.1520/STP27137S
26.   Kutz, M., Handbook of Transportation Engineering, Vol. 768, McGraw-Hill New York, NY, USA, (2004).
27.   Burhan, L., Ghafor, K., and Mohammed, A., "Quantification the effect of microsand on the compressive, tensile, flexural strengths, and modulus of elasticity of normal strength concrete", Geomechanics and Geoengineering, (2019), 1–19. doi:10.1080/17486025.2019.1680884
28.   Jin, A.-Y., Pan, J.-W., Wang, J.-T., and Du, X.-L., "A spectrum-based earthquake record truncation method for nonlinear dynamic analysis of arch dams", Soil Dynamics and Earthquake Engineering, Vol. 132, (2020), 106104. doi:10.1016/j.soildyn.2020.106104
29.   CAPEER (Pacific Earthquake Engineering Research Center), PEER Ground Motion Database, Pacific Earthquake Engineering Research Center, University of California, Berkeley, US, (2010).
30.   Rezaee Manesh, M., and Saffari, H., "Empirical equations for the prediction of the bracketed and uniform duration of earthquake ground motion using the Iran database", Soil Dynamics and Earthquake Engineering, Vol. 137, (2020), 106306. doi:10.1016/j.soildyn.2020.106306
31.   Biswas, R., "Evaluating Seismic Effects on a Water Supply Network and Quantifying Post-Earthquake Recovery", International Journal of Engineering, Transaction B: Applications, Vol. 32, No. 5, (2019), 654–660. doi:10.5829/ije.2019.32.05b.05
32.   Wang, P., Zhao, M., Du, X., and Cheng, X., "A finite element solution of earthquake-induced hydrodynamic forces and wave forces on multiple circular cylinders", Ocean Engineering, Vol. 189, (2019), 106336. doi:10.1016/j.oceaneng.2019.106336
33.   Shahmardani, M., Mirzapour, J., and Tariverdilo, S., "Dynamic Response of Submerged Vertical Cylinder with Lumped Mass under Seismic Excitation", International Journal of Engineering, Transaction A: Basics, Vol. 27, No. 10, (2014), 1547–1556. doi:10.5829/idosi.ije.2014.27.10a.08
34.   Wang, M., Chen, J., Wu, L., and Song, B., "Hydrodynamic Pressure on Gravity Dams with Different Heights and the Westergaard Correction Formula", International Journal of Geomechanics, Vol. 18, No. 10, (2018), 04018134. doi:10.1061/(ASCE)GM.1943-5622.0001257
35.   Belytschko, T., and Black, T., "Elastic crack growth in finite elements with minimal remeshing", International Journal for Numerical Methods in Engineering, Vol. 45, No. 5, (1999), 601–620. doi:10.1002/(SICI)1097-0207(19990620)45:53.0.CO;2-S
36.   Geelen, R., Plews, J., Tupek, M., and Dolbow, J., "An extended/generalized phase‐field finite element method for crack growth with global‐local enrichment", International Journal for Numerical Methods in Engineering, Vol. 121, No. 11, (2020), 2534–2557. doi:10.1002/nme.6318
37.   Okodi, A., Li, Y., Cheng, R., Kainat, M., Yoosef-Ghodsi, N., and Adeeb, S., "Crack Propagation and Burst Pressure of Pipeline with Restrained and Unrestrained Concentric Dent-Crack Defects Using Extended Finite Element Method", Applied Sciences, Vol. 10, No. 21, (2020), 7554. doi:10.3390/app10217554
38.   Moes, N., Dolbow, J., and Belytschko, T., "A finite element method for crack growth without remeshing", International Journal for Numerical Methods in Engineering, Vol. 46, No. 1, (1999), 131–150. doi:10.1002/(SICI)1097-0207(19990910)46:13.0.CO;2-J
39.   ABAQUS User Manual, V. 6.12. Providence RI, USA: DS SIMULIA Corp, (2012).
40.   REMMERS, J., DEBORST, R., and NEEDLEMAN, A., "The simulation of dynamic crack propagation using the cohesive segments method", Journal of the Mechanics and Physics of Solids, Vol. 56, No. 1, (2008), 70–92. doi:10.1016/j.jmps.2007.08.003
41.   Zeng, Q., and Yao, J., "Numerical Simulation of Fluid-Solid Coupling in Fractured Porous Media with Discrete Fracture Model and Extended Finite Element Method", Computation, Vol. 3, No. 4, (2015), 541–557. doi:10.3390/computation3040541
42.   Hansbo, A., and Hansbo, P., "A finite element method for the simulation of strong and weak discontinuities in solid mechanics", Computer Methods in Applied Mechanics and Engineering, Vol. 193, Nos. 33–35, (2004), 3523–3540. doi:10.1016/j.cma.2003.12.041
43.   Song, J.-H., Areias, P. M. A., and Belytschko, T., "A method for dynamic crack and shear band propagation with phantom nodes", International Journal for Numerical Methods in Engineering, Vol. 67, No. 6, (2006), 868–893. doi:10.1002/nme.1652
44.   Chen, Z., Liu, J., and Qiu, H., "Solidification Crack Evolution in High-Strength Steel Welding Using the Extended Finite Element Method", Materials, Vol. 13, No. 2, (2020), 483. doi:10.3390/ma13020483
45.   Moës, N., and Belytschko, T., "Extended finite element method for cohesive crack growth", Engineering Fracture Mechanics, Vol. 69, No. 7, (2002), 813–833. doi:10.1016/S0013-7944(01)00128-X
46.   Fallah, N., "A Development in the Finite Volume Method for the Crack Growth Analysis without Global Remeshing", International Journal of Engineering, Transaction A: Basics, Vol. 29, No. 7, (2016), 898–908. doi:10.5829/idosi.ije.2016.29.07a.03
47.   Sukumar, N., Moes, N., Moran, B., and Belytschko, T., "Extended finite element method for three-dimensional crack modelling", International Journal for Numerical Methods in Engineering, Vol. 48, No. 11, (2000), 1549–1570. doi:10.1002/1097-0207(20000820)48:113.0.CO;2-A
48.   Gravouil, A., Moës, N., and Belytschko, T., "Non-planar 3D crack growth by the extended finite element and level sets-Part II: Level set update", International Journal for Numerical Methods in Engineering, Vol. 53, No. 11, (2002), 2569–2586. doi:10.1002/nme.430
49.   Duan, Q., Song, J.-H., Menouillard, T., and Belytschko, T., "Element-local level set method for three-dimensional dynamic crack growth", International Journal for Numerical Methods in Engineering, Vol. 80, No. 12, (2009), 1520–1543. doi:10.1002/nme.2665
50.   Nistor, I., Pantalé, O., and Caperaa, S., "Numerical implementation of the eXtended Finite Element Method for dynamic crack analysis", Advances in Engineering Software, Vol. 39, No. 7, (2008), 573–587. doi:10.1016/j.advengsoft.2007.06.003
51.   Motamedi, D., and Mohammadi, S., "Dynamic analysis of fixed cracks in composites by the extended finite element method", Engineering Fracture Mechanics, Vol. 77, No. 17, (2010), 3373–3393. doi:10.1016/j.engfracmech.2010.08.011
52.   Khademhosseini Beheshti, H., Haji Aboutalebi, F., and Najimi, M., "Stress Intensity Factor Determination in Functionally Graded Materials, Considering Continuously Varying of Material Properties", International Journal of Engineering, Transaction C: Aspects, Vol. 29, No. 12, (2016), 1741–1746. doi:10.5829/idosi.ije.2016.29.12c.13
53.   Rong, B., Rui, X., Tao, L., and Wang, G., "Theoretical modeling and numerical solution methods for flexible multibody system dynamics", Nonlinear Dynamics, Vol. 98, No. 2, (2019), 1519–1553. doi:10.1007/s11071-019-05191-3
54.   Sadripour, S., Estajloo, M., Hashemi, S., and Adibi, M., "Experimental and Numerical Investigation of Two Different Traditional Hand-Baking Flatbread Bakery Units in Kashan, Iran", International Journal of Engineering, Transaction B: Applications, Vol. 31, No. 8, (2018), 1292–1301. doi:10.5829/ije.2018.31.08b.18
55.   Gustafsson, A., Khayyeri, H., Wallin, M., and Isaksson, H., "An interface damage model that captures crack propagation at the microscale in cortical bone using XFEM", Journal of the Mechanical Behavior of Biomedical Materials, Vol. 90, (2019), 556–565. doi:10.1016/j.jmbbm.2018.09.045