Analytical Evaluation of Core Losses, Thermal Modelling and Insulation Lifespan Prediction for Induction Motor in Presence of Harmonic and Voltage Unbalance

Document Type : Original Article

Authors

1 Centre of Excellence on Applied Electromagnetic Systems, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran

2 Faculty of Electrical Engineering, University of Shahid Beheshti, Tehran, Iran

Abstract

Electrical motor are the ubiquitous workhorses of the industry, working over wide range of conditions and applications. Modern motors, designed to exact ratings using new materials and improved manufacturing techniques, are now much smaller but have higher loadings. They are being operated much closer to the point of overload than ever before. To ensure a satisfactory lifespan for the motor, temperature rise must be limited to the safe values. This paper proposes an analytical approach to estimate core losses of induction motor supplied by either harmonic content or voltage unbalance source. A model based on the thermal lumped parameters is introduced and used to predict the insulation lifespan of induction motors. Lumped parameters network of the motor is developed based on dimensions of the motor, thermal resistances, thermal capacitances, and loss sources. Then, the model is used to estimate the temperature in different parts of the machine and its insulation lifespan. Finally, the predicted results are verified by experiments.

Keywords


  1. Agamloh, E. B., ″Induction motor efficiency″, IEEE Industry Applications Magazine, Vol. 17, No. 6 (2011), 20-28, doi:10.1109/MIAS.2011.942298
  2. Al-Badri, M., Pillay, P., and Angers, P., ″A novel algorithm for estimating refurbished three-phase induction motors efficiency using only no-load tests″, IEEE Transactions on Energy Conversion, Vol. 30, No. 2, (2015), 615-625. doi:10.1109/TEC.2014.2361258
  3. Pfingsten, G.V, Steentjes, S. , and Hameyer K., ″Operating point resolved loss calculation approach in saturated induction machines″, IEEE Transactions on Industrial Electronics, Vol. 31, No. 4, (2016), 1200-1208.doi:10.1109/TIE.2016.2597761
  4. Cabezas Rebolledo, A. A, and Valenzuela M. A., ″Expected savings using loss-minimizing flux on induction machine drives—Part I: Optimum flux and power savings for minimum losses″,IEEE Transactions Industrial Applications, Vol. 51, No 2, (2015), 1408-1416. doi: 10.1109/TIA.2014. 2356643
  5. Lim, S., and Nam, K., ″Loss-minimising control scheme for induction motors″, IEE Proceedings-Electric Power Applications, Vol. 151, No. 4, (2014), 385-397, doi: 10.1049/ ip-epa:20040384
  6. Odhano, S. A., Bojoi, R., and Boglietti, A.,  Rosou, S. G., and Griva, G., ″Maximum efficiency per torque direct flux vector control of induction motor drives″, IEEE Transactions on Industrial Applications,Vol. 51, No. 6, (2015), 4415-4424. doi: 10.1109/TIA.2015.2448682
  7. Gmyrek, Z., Boglietti, A., and Cavagnino, A., ″Estimation of iron losses in induction motors: Calculation method, results, and analysis″, IEEE Transactions on Industrial Electronics, Vol. 57, No. 1, 161-171, (2010) doi: 10.1109/TIE.2009.2024095
  8. Kowal, D., Sergeant, P., Dupre, L., and Karmaker, H., ″Comparison of frequency and time-domain iron and magnet loss modelling including PWM harmonics in a PMSG for a wind energy applications″, IEEE Transactions on Energy Conversion, Vol.30, No. 2, (2015) 4,76-486. doi: 10.1109/TEC.2014.2373312
  9. Reinert, J., Brockmeyer, A., and De Doncker, R. W. A. A., ″Calculation of losses in ferro- and ferri-magnetic materials based on the modified Steinmetz equation″, IEEE Transactions on Industrial Applications. Vol. 3, No. 4, (2001), 1055-1061.doi: 10.1109/TEC.2014. 2373312
  10. Bradley, K., Cao, W., Clare, J. and Wheeler, P., ″Predicting inverter-induced harmonic loss by improved harmonic injection″, IEEE Transactions on Power Electronics, Vol. 23, No. 5, (2008), 2619-2624. doi: 10.1109/TPEL.2008. 2002329
  11. Gyselinck, J.J., Dupre, L.R., Vandevelde, L. and Melkebeek, J.A. ″Calculation of no-load induction motor core losses using the rate-dependent Preisach model″, IEEE Transactions on Magnetics, Vol. 34, No. 6, (1998), 3876-3881. doi: 10.1109/20.728297
  12. Fasil, M., Mijatovic, N., Jensen B. B., and Holboll, J., ″Nonlinear dynamic model of PMBLDC motor considering core losses″,  IEEE Transactions on Industrial Electronis, Vol. 64 No. 12, ,(2017), 9282-9290. doi: 10. 1109/TIE.2017. 2711536
  13. Ruuskanen, V., Nerg, J., Rilla, M., and Pyrhönen, J., ″Iron loss analysis of the permanent-magnet synchronous machine based on finite-element analysis over the electrical vehicle drive cycle″, IEEE Transactions on Industrial Electronics, 2016, Vol. 63, No. 7, (2016), 4129-4136.doi: 10.1109/TIE. 2016. 2549005
  14. Boglietti, A., Cavagnino, A., Ionel, D.M., Popescu, M., Staton, D.A. and Vaschetto, S., ″A general model to predict the iron losses in PWM inverter-fed induction motors″, IEEE Transactions on Industrial Applications., Vol. 46, No. 5, (2010), 1882-1890. doi: 10. 1109/TIA. 2010. 2057393
  15. Ionel, D.M., Popescu, M., McGilp, M.I., Miller, T.J.E., Dellinger, S.J. and Heideman, R.J.,″Computation of core losses in electrical machines using improved models for laminated steel″, IEEE Transactions on Industry Applications, Vol.  43, No. 7, (2007), 54-64.doi:
  16. Chatterjee, D., ″Impact of core losses on parameter identification of three phase induction machines″, IET Power Electronics, Vol. 7, No 12, (2014), 3126-3136.doi: 10.1049/iet-pel.2014.0121
  17. Dlala, E.: ″Comparison of models for estimating magnetic core losses in electrical machines using the finite-element method″, IEEE Transactions on Magnetics, Vol. 45, No. 2, (2014), 716-725.doi: 10.1109/TMAG.2008.2009878
  18. A Krings, and J Soulard, ″Overview and comparison of core loses models for electrical machines″, Electrical Energy Conversion,Vol. 10, No 3, (2010), 162-169.
  19. Dongdong, Z., Ruichi A. and Wu, Z., ″Effect of voltage unbalance and distortion on the loss characteristics of three-phase cage induction motor″, IET Electric Power Applications, Vol. 12, No. 2, (2018) 264-270. doi: 10.1049/iet-epa.2017.0464
  20. Zhao, H., Wang, Y., Dongdong, Z., Zhan, and Luo, Y., ″Piecewise variable parameter model for precise analysis of core losses in induction motors″, IET Electric Power Applications, Vol. 11, (2017), 361-368, doi: 10.1049/iet-epa.2016.0009
  21. Alatawneh N., and Pillay, P., ″The minor hysteresis loop under rotating magnetic fields in machine laminations″, IEEE Transactions on Industrial Applications, Vol. 50, No. 4, (2014), 2544-2553, doi: 10.1109/TIA.2014. 2300155
  22. Venkatachalam, K., Sullivan, C.R., Abdallah, T. and Tacca, H., ″Accurate prediction of ferrite core loss with non-sinusoidal waveforms using only Steinmetz parameters″, 8th IEEE Workshop on Computers in Power Electronics (COMPEL), (2002).
  23. Jankowski, T.A., Prenger, F.C., Hill, D.D., O'bryan, S.R., Sheth, K.K., Brookbank, E.B., Hunt, D.F. and Orrego, Y.A.,″Development and validation of a thermal model for electric induction motors″, IEEE Transactions on Industrial Electronics, Vol. 56, No. 12, (2010), 4043-4054. doi: 10.1109/TIE. 2010. 2043044
  24. Boglietti, A., Cossale M.,  Vaschetto,S., and Dutra, T., ″Winding thermal model for short-time transient: Experimental validation in operative condition″s, IEEE Transactions on Industrial Applications, Vol. 54, No. 2, (2012), 1312-1319. doi: 10.1109/TIA.2017.2777920
  25. Boglietti, A., Carpaneto, E., Cossale, M., and Vaschetto S., ″Stator winding thermal models for short-time thermal transients: Definition and validation″, IEEE on Transactions Industrial Electronics, Vol.  63, No. 2, (2016), 2713-2721.doi: 10. 1109/TIE.2015.2511170
  26. Jankowski, T.A., Prenger, F.C., Hill, D.D., O'bryan, S.R., Sheth, K.K., Brookbank, E.B., Hunt, D.F. and Orrego, Y.A.,″Development and validation of a thermal model for electric induction motors″, IEEE Transactions on Industrial Electronics, Vol. 57, No. 12, (2010), 4043-4054. doi: 10.1109/TIE.2010. 2043044
  27. Armando, E. G.,  Boglietti, A.,  Castagnini, E. C. A., and Seita, M., ″Thermal Performances of Induction Motors for Applications in Washdown Environment″, IEEE Transactions on Industrial Applications, Vol. 55, No. 3, (2019),4578-4585. doi: 10. 1109/ICEL, MACH.2018.8507019
  28. Fernando J. T. E. Ferreira, Benoit L., and Aníbal T. De., ″Comparison of protection requirements in IE2-, IE3-  and IE4-Class motors″, IEEE Transactions on Industrial Applications, Vol. 52, No.4, (2016), 3603-3610.doi: 10. 1109/TIA.2016.2545647
  29. Ahmed, F. and Kar, N. C., ″Analysis of end-winding thermal effects in a totally enclosed fan cooled induction motor with die cast copper rotor″, IEEE Transactions on Industrial Applications, Vol. 53, No. 2, (2017), 3098-3109. doi: 10.1109/TIA.2017.2648780
  30. Boglietti, A., Cavagnino, A., and Popescu, M., and Staton, D., ″Thermal model and analysis of wound-rotor induction machine″, IEEE Transactions on Industrial Applications, Vol.  49. No. 5, (2013). doi: 10.1109/TIA. 2013.2261444
  31. Zhang, H., ″Online thermal monitoring models for induction machines″, IEEE Transactions on Energy Conversion, Vol. 30 No. 4, (2015), 1279-1287. doi: 10. 1109/TEC. 2015.2431444