An Improved Modeling of Parkinson’s Tremor and Investigation of Some Approaches to Remove this Symptom

Document Type : Original Article


Biomedical Engineering Dept., Engineering faculty, Shahed University, Tehran, Iran


In this research, an improved model of Parkinsonian tremor is presented by using a mathematical and computational approach. In Parkinson’s disease (PD), an abnormal signal is produced by basal ganglia (BG). This signal goes to the thalamus, then enters cortex and after interaction with peripheral system goes to muscle and finally appears as tremor. In the presented model, all of the mentioned process are simulated. Also, the skeletal muscle model as well as the central nervous system (basal ganglia, thalamus, cortex and supplementary motor area) and peripheral nervous system (spinal reflex) mechanisms are considered. In addition, two methods for tremor suppression are applied in this paper, 1) deep brain stimulation (DBS) which affects dopamine level in BG and 2) a mechanical method which is based on a negative feedback. The accuracy and efficiency of the presented simulation are demonstrated by comparison of the obtained results with those obtained by clinical tests.


1.     Nahvi, A. R., Bahrami, F., Hemmati, S. “Investigating different targets in deep brain stimulation on parkinson’s disease using a mean-field model of the basal ganglia-thalamocortical system.” Mechanics in Medicine and Biology, Vol. 12, No. 2, (2011), 1-13. doi: 10.1109/MECBME.2011.5752089.
2.     Haeri, M., Sarbaz, Y., Gharibzadeh, Sh. “Modeling the Parkinson’s tremor and its treatments,” Theoretical Biology, Vol. 236, (2005), 311-322. doi: 10.1016/j.jtbi.2005.03.014.
3.     MashhadiMalek, M., Towhidkhah, F., Gharibzadeh, Sh., Daeichin, V., Ahmadi-Pajouh, M. A. “Are rigidity and tremor two sides of the same coin in Parkinson’s disease?”, Computers in Biology and Medicine, Vol. 38, (2008), 1133-1139. doi: 10.1016/j.compbiomed.2008.08.007.
4.     vanAlbada, S. J., Robinson, P. A. “Mean-field modeling of the basal ganglia-thalamocortical system. I Firing rates in healthy and parkinsonian states”, Theoretical Biology, Vol. 257, (2009), 642-663. doi:10.1016/j.jtbi.2008.12.018.
5.     Dvoynikov, M., Kunshin, A., Blinov, P., Morozov, V. “Development of Mathematical Model for Controlling Drilling Parameters with Screw Downhole Motor”, International Journal of Engineering, Transactions A: Basics, Vol. 33, No. 7 (2020), 1423-1430. doi: 10.5829/ije.2020.33.07a.30.
6.     Tehrani, F. T. “A Model of the Respiratory System in the Newborn Infant”, International Journal of Engineering, Vol. 4, No. 3 (1991), 101-106.
7.     Zolfaghari, M., ghoreshi, M., tahmasbi, v. “Temperature in bone drilling process: Mathematical modeling and Optimization of effective parameters”, International Journal of Engineering, Transactions A: Basics, Vol. 29, No. 7, (2016), 946-953. doi: 10.5829/idosi.ije.2016.29.07a.09.
8.     Ghoreishian, F., Pooyan, M. “A mathematical model for tremor genesis in Parkinson disease from a chaotic view”, in 21st Iranian Confrence on Biomedical Engineering, (2014), 353-357. doi: 10.1109/ICBME.2014.7043950.
9.     Pledgie, S., Barner, K.,  Agrawal, S. “Tremor Suppression Through Impedance Control”, IEEE Transactions on Rehabilitation Engineering, Vol. 8, No. 1, (2000), 53–59. doi:  10.1109/86.830949.
10.   Parent, A., LeÂvesque, M., Parent, M. “A re-evaluation of the current model of the basal ganglia”, Parkinsonism and Related Disorders, Vol. 7, (2001), 193-198. doi: 10.1016/s1353-8020(00)00058-4.
11.   Mains, R. E., Soechting, J. F. “A model for the neuromuscular response to sudden disturbances”, Journal of Dynamic Systems, Measurement, and Control, Vol. 93, No. 4, (1971), 247-251. doi: 10.1115/1.3426508
12.   Montgomery, J. r., Baker, K. B. “Mechanisms of deep brain stimulation and future technical developments”, Neurological Research, Vol. 22, No. 3, (2000), 259–266. doi: 10.1080/01616412.2000.11740668.
13.   Figee, M., Koning, P., Klaassen, S., Vulink, N., Mantione, M., Munckhof, P., Schuurman, R., Wingen, G., Amelsvoort, Th., Booij, J., Denys, D. “Deep Brain Stimulation Induces Striatal Dopamine Release in Obsessive-Compulsive Disorder”, Biological Psychiatry, Vol. 75, (2014), 647-652. doi: 10.1016/j.biopsych.2013.06.021.
14.   Klanker, M., Feenstra, M., Willuhn, L., Denys, D. “Deep brain stimulation of the medial forebrain bundle elevates striatal dopamine concentration without affecting spontaneous or reward-induced phasic release”, Neuroscience, Vol. 364, (2017), 82-92. doi: 10.1016/j.neuroscience.2017.09.012.
15.          Smith, G. S., Mills, K. A., Pontone, G. M., Anderson, W. S., Perepezko, K. M., Brasic, J., Zhou, Y., Brandt, J., Butson, Ch. R., Holt, D. P., Mathews, W. B., Dannals, R. F., Wong, D. F., Mari, Z. “Effect of STN DBS on vesicular monoamine transporter 2 and glucose metabolism in Parkinson's disease”, Parkinsonism & Related Disorders, Vol. 64, (2019), 235-241. doi: 10.1016/j.parkreldis.2019.04.006.