Intrusion Detection in Cyber-Physical Layer of Smart Grid Using Intelligent Loop Based Artificial Neural Network Technique

Document Type : Original Article


Electrical Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-India


This paper, proposes an Intelligent Loop Based Artificial Neural Network (ILANN) based detection technique for the detection of cyber intrusion in a smart grid against False Data Injection Attack (FDIA). This method compares the deviation of a system with the equipment load profile present on the system node(s) and any deviation from predefined values generates an alarm. Every 2 milliseconds (ms) the data obtained by the measurement is passed through the attack detection system, in case if the deviation is continuously for 5 measurement cycles i.e. for 10 ms and it does not match with the load combination the operator will get the first alert alarm. In case the deviation is not fixed after 8 measurement cycles then the system alerts the control centre. FDI attack is used by attackers to affect the healthy operation of the smart grid. Using FDI the hackers can permanently damage many power system equipment’s which may lead to higher fixing costs. The result and analysis of the proposed cyber detection approach help operator and control centre to identify cyber intrusion in the smart grid scenario. The method is used to detect a cyberattack on IEEE-9 Bus test system using MATLAB software.


1.     Mansouri, H.R., Mozafari, B., Soleymani, S. and Mohammadnezhad, H., "A new optimal distributed strategy to mitigate the phase imbalance in smart grids", International Journal of Engineering,  Vol. 33, No. 12, (2020), 2489-2495. DOI: 10.5829/ije.2020.33.12c.08.
2.     Singh, N.K. and Mahajan, V., "Analysis and evaluation of cyber-attack impact on critical power system infrastructure", Smart Science,  (2021), 1-13. DOI: 10.1080/23080477.2020.1861502
3.     Sunitha, R. and Chandrikab, J., "Evolutionary computing assisted wireless sensor network mining for qos-centric and energy-efficient routing protocol", International Journal of Engineering,  Vol. 33, No. 5, (2020), 791-797. DOI: 10.5829/ije.2020.33.05b.10.
4.     Wang, W. and Lu, Z., "Cyber security in the smart grid: Survey and challenges", Computer Networks,  Vol. 57, No. 5, (2013), 1344-1371. DOI: 10.1016/j.comnet.2012.12.017
5.     Sou, K.C., Sandberg, H. and Johansson, K.H., "On the exact solution to a smart grid cyber-security analysis problem", IEEE Transactions on Smart Grid,  Vol. 4, No. 2, (2013), 856-865. DOI: 10.1109/TSG.2012.2230199
6.     Alfantookh, A.A., "Dos attacks intelligent detection using neural networks", Journal of King Saud University-Computer and Information Sciences,  Vol. 18, (2006), 31-51. DOI: 10.1016/S1319-1578(06)80002-9
7.     Kwon, Y., Kim, H.K., Lim, Y.H. and Lim, J.I., "A behavior-based intrusion detection technique for smart grid infrastructure", in 2015 IEEE Eindhoven PowerTech, IEEE. 1-6. DOI: 10.1109/PTC.2015.7232339
8.     Zhang, J., Ai, Z., Guo, L. and Cui, X., "Reliability evaluation of a disaster airflow emergency control system based on bayesian networks", International Journal of Engineering,  Vol. 33, No. 11, (2020), 2416-2424. DOI: 10.5829/ije.2020.33.11b.32.
9.     Singh, N.K., Gupta, P.K. and Mahajan, V., "Intrusion detection in wireless network of smart grid using intelligent trust-weight method", Smart Science,  Vol. 8, No. 3, (2020), 152-162. DOI: 10.1080/23080477.2020.1805679
10.   Lo, C.-H. and Ansari, N., "Consumer: A novel hybrid intrusion detection system for distribution networks in smart grid", IEEE Transactions on Emerging Topics in Computing,  Vol. 1, No. 1, (2013), 33-44. DOI: 10.1109/TETC.2013.2274043
11.   Manandhar, K., Cao, X., Hu, F. and Liu, Y., "Detection of faults and attacks including false data injection attack in smart grid using kalman filter", IEEE Transactions on Control of Network Systems,  Vol. 1, No. 4, (2014), 370-379. DOI: 10.1109/TETC.2013.2274043
12.   Jow, J., Xiao, Y. and Han, W., "A survey of intrusion detection systems in smart grid", International Journal of Sensor Networks,  Vol. 23, No. 3, (2017), 170-186. DOI: 10.1504/IJSNET.2017.083410
13.   Wang, Q., Tai, W., Tang, Y. and Ni, M., "Review of the false data injection attack against the cyber-physical power system", IET Cyber-Physical Systems: Theory & Applications,  Vol. 4, No. 2, (2019), 101-107. DOI: 10.1049/iet-cps.2018.5022
14.   Singh, N.K. and Mahajan, V., "End-user privacy protection scheme from cyber intrusion in smart grid advanced metering infrastructure", International Journal of Critical Infrastructure Protection,  (2021), 100410. DOI: 10.1016/j.ijcip.2021.100410
15.   Singh, N.K. and Mahajan, V., "Detection of cyber cascade failure in smart grid substation using advance grey wolf optimization", Journal of Interdisciplinary Mathematics,  Vol. 23, No. 1, (2020), 69-79. DOI: 10.1080/09720502.2020.1721664
16.   Wang, G., Giannakis, G.B. and Chen, J., "Robust and scalable power system state estimation via composite optimization", IEEE Transactions on Smart Grid,  Vol. 10, No. 6, (2019), 6137-6147. DOI: 10.1109/TSG.2019.2897100
17.   Esmalifalak, M., Nguyen, H., Zheng, R. and Han, Z., "Stealth false data injection using independent component analysis in smart grid", in 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), IEEE. 244-248. DOI: 10.1109/SmartGridComm.2011.6102326
18.   Kosut, O., Jia, L., Thomas, R.J. and Tong, L., "Limiting false data attacks on power system state estimation", in 2010 44th Annual Conference on Information Sciences and Systems (CISS), IEEE. 1-6. DOI: 10.1109/SmartGridComm.2011.6102326
19.   Ashok, A., Govindarasu, M. and Ajjarapu, V., "Online detection of stealthy false data injection attacks in power system state estimation", IEEE Transactions on Smart Grid,  Vol. 9, No. 3, (2016), 1636-1646. DOI: 10.1109/TSG.2016.2596298
20.   Pan, S., Morris, T. and Adhikari, U., "Developing a hybrid intrusion detection system using data mining for power systems", IEEE Transactions on Smart Grid,  Vol. 6, No. 6, (2015), 3104-3113. DOI: 10.1109/TSG.2015.2409775
21.   Vuković, O. and Dán, G., "Security of fully distributed power system state estimation: Detection and mitigation of data integrity attacks", IEEE Journal on Selected Areas in Communications,  Vol. 32, No. 7, (2014), 1500-1508. DOI: 10.1109/JSAC.2014.2332106
22.   Ferragut, E.M., Laska, J., Olama, M.M. and Ozmen, O., "Real-time cyber-physical false data attack detection in smart grids using neural networks", in 2017 International Conference on Computational Science and Computational Intelligence (CSCI), IEEE. 1-6. DOI: 10.1109/CSCI.2017.1
23.   Zhou, L., Ouyang, X., Ying, H., Han, L., Cheng, Y. and Zhang, T., "Cyber-attack classification in smart grid via deep neural network", in Proceedings of the 2nd International Conference on Computer Science and Application Engineering. 1-5. DOI: 10.1145/3207677.3278054
24.   Ernst, J., Hamed, T. and Kremer, S., A survey and comparison of performance evaluation in intrusion detection systems, in Computer and network security essentials. 2018, Springer.555-568. DOI: 10.1007/978-3-319-58424-9_32
25.   Niu, X., Li, J., Sun, J. and Tomsovic, K., "Dynamic detection of false data injection attack in smart grid using deep learning", in 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), IEEE. 1-6. DOI: 10.1109/ISGT.2019.8791598
26.   Phua, C., Alahakoon, D. and Lee, V., "Minority report in fraud detection: Classification of skewed data", Acm Sigkdd Explorations Newsletter,  Vol. 6, No. 1, (2004), 50-59. DOI: 10.1145/1007730.1007738
27.   Sundarkumar, G.G. and Ravi, V., "A novel hybrid undersampling method for mining unbalanced datasets in banking and insurance", Engineering Applications of Artificial Intelligence,  Vol. 37, (2015), 368-377. DOI: 10.1016/j.engappai.2014.09.019
28.   Kulhare, R. and Singh, D., "Intrusion detection system based on fuzzy c means clusteringand probabilistic neural network", International Journal of Computer Applications,  Vol. 74, No. 2, (2013). DOI: 10.1145/3207677.3278054
29.   Ren, W., Cao, J. and Wu, X., "Application of network intrusion detection based on fuzzy c-means clustering algorithm", in 2009 Third International Symposium on Intelligent Information Technology Application, IEEE. Vol. 3, 19-22. DOI: 10.1109/IITA.2009.269