
IJE TRANSACTIONS A: Basics Vol. 34, No. 04, (April 2021) 832-842

Please cite this article as: E. Tahanian, M. Amouei, H. Fateh, M. Rezvani , A Game-theoretic Approach for Robust Federated Learning ,
International Journal of Engineering, Transactions A: Basics Vol. 34, No. 04, (2021) 832-842

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

A Game-theoretic Approach for Robust Federated Learning

E. Tahanian*, M. Amouei, H. Fateh, M. Rezvani

Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran

P A P E R I N F O

Paper history:
Received 20 November 2020
Received in revised form 28 December 2020
Accepted 14 January 2021

Keywords:
Federated Learning
Game Theory
Byzantine Model
Adaptive Averaging

A B S T R A C T

Federated learning enables aggregating models trained over a large number of clients by sending the
models to a central server, while data privacy is preserved since only the models are sent. Federated

learning techniques are considerably vulnerable to poisoning attacks. In this paper, we explore the threat

of poisoning attacks and introduce a game-based robust federated averaging algorithm to detect and
discard bad updates provided by the clients. We model the aggregating process with a mixed-strategy

game that is played between the server and each client. The valid actions of the clients are to send good

or bad updates while the server can accept or ignore these updates as its valid actions. By employing the
Nash Equilibrium property, the server determines the probability of providing good updates by each

client. The experimental results show that our proposed game-based aggregation algorithm is

significantly more robust to faulty and noisy clients in comparison with the most recently presented
methods. According to these results, our algorithm converges after a maximum of 30 iterations and can

detect 100% of the bad clients for all the investigated scenarios. In addition, the accuracy of the proposed

algorithm is at least 15.8% and 2.3% better than the state of the art for flipping and noisy scenarios,
respectively.

doi: 10.5829/ije.2021.34.04a.09

1. INTRODUCTION1

As datasets grow, the optimization of learning model

parameters needs distribution across multiple machines.

The idea of federated learning has recently been

proposed, in which a shared global model is trained with

the cooperation of a central server and some participants

named clients [1-7], as can be seen in Figure 1. In other

words, the clients train the model using their own local

datasets and send it back to the central server. The server

aggregates the information sent by the clients to update

the shared global model. Afterward, the server sends the

updated global model to some of the clients and this

process is repeated again. Since the clients send only the

model and not the data to the server, the data privacy is

preserved.

One of the most important concerns about federated

learning is sending bad updates by faulty or malicious

clients. The researchers showed that only one bad client

can compromise the model as well as the result in a

convergence problem [4]. Thus, the researchers have

*Corresponding Author Institutional Email:

e.tahanian@shahroodut.ac.ir (E. Tahanian)

tried to mitigate this problem by proposing different

robust federated learning approaches [1, 8-10].

However, some of these techniques impose

computational cost in comparison with the conventional

averaging such as Federated Averaging (FA) [1],

especially for a large number of clients. In addition, most

of these techniques do not consider the number of data

points used by each client to train the local models.

In this paper, we propose a Game-based robust Federated

Averaging algorithm (GFA) to detect and discard bad

updates provided by the clients. The proposed method

uses an iterative averaging algorithm to highlight the

effect of the good updates sent by the majority of the

clients. At the end of this iterative algorithm, a

trustworthiness is assigned to each client that can be used

to put the client in one of the good or bad sets. Finally,

the server considers the probability of providing good

updates to the model by each client. These probabilities

can be computed by considering a mixed-strategy game

between the central server and each client that exists in

the good client set. The valid actions of the clients are to

mailto:e.tahanian@shahroodut.ac.ir

E. Tahanian et al. / IJE TRANSACTIONS A: Basics Vol. 34, No. 04, (April 2021) 832-842 833

Figure 1. Architecture for a federated learning system with

five benign clients that communicate with a central server

periodically to learn a global model

send good or bad updates while the server can accept or

ignore these updates. By employing the Nash

Equilibrium property [11], the server determines the

clients’ probability to provide good updates to the model.

We summarize our main contributions as follows:

• We propose an iterative averaging algorithm for the

server to obtain the trustworthiness of each update

and a robust estimate of the final model,

simultaneously.

• We model the problem using a mixed-strategy game

between the central server and each client.

• We apply the Nash Equilibrium property to

compute the probability of providing good updates

from each client.

We provide a thorough empirical evaluation of the

effectiveness and efficiency of our proposed robust

federated learning method. The results show that our

method provides both higher accuracy and faster

convergence than the existing methods. Specifically, our

algorithm converges after a maximum of 30 iterations

and can detect 100% of the bad clients for all the

investigated scenarios. Furthermore, the accuracy of the

proposed algorithm is at least 15.8% and 2.3% better than

the state of the art for flipping and noisy scenarios,

respectively.

The rest of this paper is organized as follows. The

related work is discussed in Section 2. Section 3

describes the proposed federated learning as well as the

aggregation algorithm. The experimental results are

reported and discussed in Section 4, followed by the

conclusion in Section 5.

2. RELATED WORK

Federated learning for the first time was implemented by

Google to predict users’ text input within a large number

of mobile devices without sending private data [2, 12].

One of the main elements of Federated learning is the

aggregation operator. Several federated aggregation

operators have been presented in literature. FedAvg [13]

updates the global model by averaging the parameters of

the local models. This algorithm was used for

recognizing out-of-vocabulary words [14] and improving

the mobile keyboard prediction [15]. As a modification

to FedAvg, Federated Stochastic Variance Reduced

Gradient (FSVRG) [2] was presented to work with sparse

data. In contrast to FedAvg and FSVRG, CO-OP [16] has

been presented for asynchronous model updates. It

merges any received client model with the global model.

According to the difference in the age of the models, the

local and global models merging is carried out using a

weighting scheme, instead of directly averaging the

models.

Due to the distributed scheme of federated learning,

it is highly vulnerable to attacks against the learning

models. As previously mentioned, sending bad updates

by faulty or malicious clients is the most serious concern

for federated learning. Consequently, the standard

federated learning algorithms such as FedAvg [1, 13] are

vulnerable to both model poisoning and data poisoning.

To overcome this problem, researchers have proposed

different robust averaging algorithms [8, 17, 18].

Some other researches have focused on vulnerability

in federated learning known as a backdoor attack [3, 19].

In this kind of attack, the adversary tries to reduce the

performance of the model on targeted tasks while

maintaining good performance on the main task [19].

Authors in [8] proposed a byzantine-robust

aggregation algorithm, referred to as KRUM, which is

based on the similarity of the client updates. To solve the

slow convergence problem of the KRUM, a faster

algorithm known as MKRUM was introduced. Yin et al.

[17] proposed a coordinate-wise median (COMED), a

byzantine-robust statistical learning algorithm with a

focus on statistical optimality.

Although the aforementioned researches take into

account both model poisoning and data poisoning for a

number of simple attack scenarios, the proposed methods

can be computationally expensive when the number of

clients is large. In contrast, the computational complexity

of our method (GFA) can be shown to be considerably

less. Moreover, the previous algorithms do not consider

the number of data points used by each client to train the

local models, while the GFA computes the averaging

based on the dataset size of each client.

Moreover, our proposed method flexibly chooses the

good clients based on the received information at each

iteration. Therefore, it is more efficient in comparison

with the works that use a pre-specified number of clients’

information to update the global model, such as the work

proposed by Xie et al. [18]. Especially, unlike the GFA,

when all of the clients or the majority of them are good,

the algorithm of Xie et al. [18] considers the pre-specified

834 E. Tahanian et al. / IJE TRANSACTIONS A: Basics Vol. 34, No. 04, (April 2021) 832-842

number of the clients as bad, which will affect the

performance of the learning process.

Also, some works have focused on applying game

theory to the federated learning system [20-22]. The

authors in [20] proposed a contract theory-based

incentive mechanism to motivate data owners that have

high-quality local training data to join the learning

processes. In [21], the authors presented the Stackelberg

game model to analyze the transmission strategy and

training data pricing strategy of the self-organized mobile

device as well as the learning service subscription of the

model owner in the cooperative federated learning

system. Zou et al. [22] adopted an evolutionary game

theory to model dynamic strategies of the mobile devices

with bounded rationality in the federated learning system.

Although all of these works used the game theory, none

of them focused on the averaging algorithm in federated

learning. In this paper, we use the game theory to propose

a robust federated averaging algorithm to detect and

discard bad updates provided by the clients.

3. FEDERATED LEARNING AND AGGREGATION
ALGORITHM

In this section, we formulate the federated learning

paradigm and propose our robust aggregation algorithm

based on a game-theoretical approach.

3. 1. Federated Learning Model The main idea

of federated learning is to perform the training of a deep

neural network (DNN) using some clients by aggregating

local models into a joint global model, as can be seen in

Figure 1. Since the local training data never shared by the

clients, the federated model can train on completely

private data.

We suppose there are 𝑁 clients where the ith client’s

dataset has 𝑛𝑖 data points. At round 𝑡, the server

randomly chooses a subset of clients (𝑀𝑡) and sends them

the latest global model (𝜔𝑡). Each client, for example, 𝑖 ∈
𝑀𝑡 that receives the model, updates it by training on its

dataset, and derives a new local model (𝜔𝑡+1
𝑖).

Afterward, the chosen clients send back the new model

to the central server. In this step, the server averages the

received local models to achieve an updated global model

according to Equation (1).

𝜔𝑡+1 = ∑
𝑛𝑖

𝑛𝑖⊂𝑀𝑡
𝜔𝑡+1

𝑖 , (1)

where 𝑛 is obtained as follows:

𝑛 = ∑ 𝑛𝑖𝑖⊂𝑀𝑡
 . (2)

However, by using such an aggregation method, only

a bad (malicious or faulty) client can lead to the wrong

solution or prevent the DNN to be converged [4]. To

solve this problem, in the next sections, we propose a

novel aggregation algorithm based on the game theory in

which the probability of providing good model updates

by each client is considered. Table 1 contains a summary

of the notations used in this paper.

3. 2. Adversary Model In this paper, we make

the following assumptions regarding the adversary: (1)

We assume that only less than half of the clients can be

compromised; (2) the attacker controls the local training

data of any compromised client; (3) it does not control

the aggregation algorithm used by the server to average

clients’ updates and generate the new global model; (4)

the attacker can not control the updates sent by the good

clients and, (5) the data is distributed among the clients

in an i.i.d fashion.

The adversary’s goal in our work is to prevent the

global model to converge. So, we propose a novel

aggregation algorithm to overcome the convergence

problem of the previous algorithms while the attacker

follows the above-mentioned assumptions. In the rest of

this paper, we use bad clients whenever we mean

malicious or faulty clients.

3. 3. Aggregation Algorithm To implement

robust federated learning, we should initially estimate the

bad clients. To reach this goal, we propose a novel

averaging algorithm as well as a game model in this

Section.

3. 3. 1. Averaging Algorithm At each round,

when the central server receives the local updates of the

clients; it uses an adaptive averaging method. In this

paper, we proposed to highlight the effect of the good

updates sent by the majority of the clients [23, 24]. The

proposed aggregation algorithm is detailed in Algorithm

1.

When the server receives the local updates of the

clients, the server iteratively computes a weighed average

as follows:

TABLE 1. The notation used in this paper.

Symbol Description

𝑁 The number of clients

𝑛𝑖 The size of the ith client dataset

𝑀𝑡 The number of clients that send updates at round 𝑡

𝑚 The size of 𝑀𝑡

𝜔𝑡+1
𝑖 The local model provided by the ith client at round 𝑡

𝜔𝑡+1 The global model sent to the clients

𝐺𝑡 The set of clients considered good by the server

𝑁𝐺 The size of 𝐺𝑡

𝐴𝐴𝑘
The weighed average of the received updates in kth

iteration

𝑦𝑖 The distance between 𝜔𝑡+1
𝑖 and 𝐴𝐴𝑘−1

E. Tahanian et al. / IJE TRANSACTIONS A: Basics Vol. 34, No. 04, (April 2021) 832-842 835

𝐴𝐴𝑘 =
∑ 𝑒−𝛼𝑦𝑖𝑖∈𝑀𝑡 𝜔𝑡+1

𝑖

∑ 𝑒−𝛼𝑦𝑖𝑖∈𝑀𝑡

, 𝑘 > 1 (3)

where 𝐴𝐴𝑘 is the weighted average of the received

updates in kth iteration and 𝑦𝑖 is the distance between

𝜔𝑡+1
𝑖 and the weighted average at the previous iteration

(𝐴𝐴𝑘−1), obtained as follows:

𝑦𝑖 = |𝝎𝒕+𝟏
𝒊 − 𝐀𝐀𝐤−𝟏|

It is to be noted that we compute the distance of each

client’s model with the current estimate of the

aggregation values to estimate the trustworthiness of the

clients. In other words, there is an inverse relationship

between the trustworthiness of a client and the distance

of its local model with the aggregated model obtained at

each iteration of our adaptive aggregation algorithm. We

employed an exponential decaying function to model

such an inverse relationship as it shows promising results

in our experiments. One can choose any other decaying

function to compute the trustworthiness from the distance

value of the models. In Equation (3), 𝛼 is a constant

parameter that controls the amount of trustworthiness

(𝑒−𝛼𝑦𝑖) considered for each update.

It should be noted that the iterative procedure starts

with giving equal credibility to all clients, i.e., with an

initial value of 1. Consequently, the initial aggregated

model at the first iteration of the algorithm is calculated

using a simple averaging as follows:

Algorithm 1 Robust Aggregation Algorithm

Require: 𝑴𝒕, 𝒏𝒊, 𝝎𝒕+𝟏
𝒊 , K, 𝜶

𝑮𝒕 ← {𝒊: 𝒊 ∈ 𝑴𝒕}

𝒎 : the size of 𝑴𝒕

for k = 1, 2, 3,…, K do

 if k = 1 then

 𝐀𝐀𝟏 =
∑ 𝛚𝐭+𝟏

𝐢
𝐢∈𝐌𝐭

𝐦

 else

 for 𝒊 ∈ 𝑴𝒕 do

 𝒚𝒊 = |𝝎𝒕+𝟏
𝒊 − 𝐀𝐀𝐤−𝟏|

 end for

 Compute 𝐀𝐀𝐤 according to Eq. (3)

 end if

end for

Apply k-means to set of {𝐞−𝛂𝐲𝟏 , … , 𝒆−𝜶𝒚𝒎} and form two

sets, 𝑮𝒕 and 𝑩𝒕

Compute 𝒑𝒕
𝒊 using Game model

𝝎𝒕+𝟏 ←
∑ 𝒑𝒕

𝒊 𝒏𝒊 𝝎𝒕+𝟏
𝒊

𝒊∈𝑮𝒕

∑ 𝒑𝒕
𝒊 𝒏𝒊𝒊∈𝑮𝒕

return 𝝎𝒕+𝟏 , 𝐆𝐭

𝐴𝐴1 =
∑ 𝜔𝑡+1

𝑖
𝑖∈𝑀𝑡

𝑚
 (4)

where 𝑚 is the size of 𝑀𝑡. By considering a stopping

criterion (K), according to the variation of the

trustworthiness of the clients, the iterative algorithm will

be stopped. The main idea for our proposed aggregation

algorithm is inspired by the iterative filtering algorithm

proposed by [in the literature [25]. In this reference, a

class of voting systems based on iterative filtering has

been presented. In other words, in the first round, the

simple average of the votes is calculated. Then,

proportional to the inverse of the distance from the

calculated average, an averaging weight is considered for

each vote to compute a next round average. This process

continues until the majority votes are close enough to

each other and therefore the minority votes are filtered.

The proof of convergence has been provided in the

literature for two different discriminant functions [25].

We believe that a similar method can be used to prove the

convergence of the iterative process in Algorithm 1. We

leave this proof as an interesting idea for our future work.

Now, we expect the trustworthiness of the good

clients are similar enough and spaced far enough from the

bad clients [23]. So, the server can apply a one-

dimensional k-means algorithm to put the clients in two

separate clusters, bad clients (𝐵𝑡) and good clients (𝐺𝑡)

with more than half of the clients. Thus, the server can

average the updates by good clients regarding to the

fraction of training data points provided by each client

(Equation (5)).

However, due to the similarity of the updates

provided by the clients, some of them may be

misdiagnosed. Therefore, the server should consider a

probability (𝑝𝑡
𝑖) in the model aggregation algorithm for

each client in 𝐺𝑡, according to Equation (5).

𝜔𝑡+1 =
∑ 𝑝𝑡

𝑖 𝑛𝑖 𝜔𝑡+1
𝑖

𝑖∈𝐺𝑡

∑ 𝑝𝑡
𝑖 𝑛𝑖𝑖∈𝐺𝑡

 (5)

The clients’ probability to provide good updates to

the model can be computed by considering a game

between the central server and each client in 𝐺𝑡, as

described in the next section.

3. 3. 2. Game Model We suppose the server plays

the game independently with each client. The valid

actions of the clients are to send good or bad updates

while the server can accept or ignore these updates as its

valid actions. It should be noted that in our model the

players (server and clients) follow a mixed-strategy in

which the actions are randomly selected over the set of

available actions according to some probability

distribution. Afterward, the Nash Equilibrium property is

applied to determine the probability of server and client

actions. The Nash Equilibrium property is a popular

Game Theory concept that describes strategies from

836 E. Tahanian et al. / IJE TRANSACTIONS A: Basics Vol. 34, No. 04, (April 2021) 832-842

which reasonable decision makers should not be deviated

to maximize their utility.

The server uses the calculated probability of

accepting the updates in our aggregation method as can

be seen in Equation (5).

Figure 2 illustrates the normal form of the game

including the valid actions and corresponding payoffs for

the ith player.

𝐴𝑖 =
𝑛𝑖

𝑁𝐺
|𝜔𝑖

𝑡+1 − 𝜔𝑡| (6)

𝐵𝑖 =
𝑛𝑖

𝑁𝐺
|𝜔𝑖

𝑡+1
| (7)

and,

(8)

where 𝑚𝑖
𝐺 and 𝑚𝑖

𝐵 are the number of times that the 𝑖th

client is in the good and bad set, respectively. Moreover,

𝑁𝐺 is the total number of data points in 𝐺𝑡.

As one can see in Figure 2, each client can send good

or bad updates while the server can accept or ignore these

updates as valid actions. When the ith client sends good

updates, if the server accepts these updates, it earns a

payoff as large as 𝐴𝑖, which indicates the ith client

contribution to the correction of the previous global

model. On the other hand, if the server rejects these good

updates, it losses this amount of payoff. Furthermore, we

consider the client payoff equal to 𝐵𝑖 , that is the client

contribution in the global model at the next round, if the

server accepts the good updates. It is worth noting that

when a client is misdiagnosed several times, the server

ignores it forever. Clearly, we should consider the effect

of this wrong action of the server in the client payoff

when it sends a good model. Therefore, in this situation,

we add the term 𝑙𝑛
1

1+𝑥
 to the client payoff. In this term,

𝑥 is related to the number of good model rejection by the

server as explained in Equation (8).

Now, if the client is faulty or malicious and sends bad

updates, the payoffs of the players can be determined as

illustrated in Figure 2. When the server accepts the bad

Figure 2. The normal form of the game played between the

server and the ith client

updates, both of them experience negative payoff. On the

other hand, if the server rejects these updates, neither side

will earn any payoffs.

3. 3. 3. Nash Equilibrium Since in our model, the

players follow a mixed-strategy, we can determine the

probability of the server and clients actions by applying

the Nash Equilibrium property. In other words, there is at

least one Nash Equilibrium when we consider mixed-

strategy [26]. A mixed strategy Nash Equilibrium

involves at least one player playing a randomized

strategy and no player is able to increase his or her

expected payoff by playing an alternate strategy. At the

mixed Nash Equilibrium, both players should be

indifferent between their two strategies. Therefore, if the

server is using a mixed strategy, it must be indifferent

between accepting and rejecting the updates. So, we can

write:

𝑞𝑡
𝑖𝐴𝑖 − 𝐴𝑖(1 − 𝑞𝑡

𝑖) = 𝑞𝑡
𝑖(−𝐴𝑖 + 𝑙𝑛(

1

1+𝑥
)) (9)

and therefore we can calculate the probability of sending

good updates by the ith client (𝒒𝒕
𝒊), when it plays Nash

Equilibrium, as follows:

𝒒𝒕
𝒊 =

𝐴𝑖

3𝐴𝑖−𝑙𝑛
1

1+𝑥

(10)

On the other hand, when the server plays Nash

Equilibrium, the ith client should be indifferent between

its two actions. So, in a similar way, the probability of

accepting the ith client updates (𝒑𝒕
𝒊) by the server, when

it plays Nash Equilibrium, can be derived as follows:

𝒑𝒕
𝒊 =

𝐵𝑖−𝑙𝑛
1

1+𝑥

3𝐵𝑖−𝑙𝑛
1

1+𝑥

 (11)

Finally, the server uses 𝒑𝒕
𝒊 in Equation (5) when it

aggregates the received updates.

It is worth noting that this game has also two pure

strategy Nash Equilibriums, i.e. (Good, Accept) and

(Bad, Reject), which are quite obvious.

4. EXPERIMENTS

In this section, we report on a detailed experimental study

that examines robustness and efficiency of our robust

federated learning method . The objective of our

experiments is to evaluate the robustness and efficiency

of our approach for estimating the global model based on

the model received from the clients in the presence of

faults.

4. 1. Experimental Environment We conducted

experiments on three datasets: CIFAR-10 [27], MNIST

[28] and SPAMBASE. CIFAR-10 consists of 60000

32 × 32 color images in 10 classes while MNIST has

70000 28 × 28 handwritten digits in 10 classes. For

E. Tahanian et al. / IJE TRANSACTIONS A: Basics Vol. 34, No. 04, (April 2021) 832-842 837

CIFAR we used VGG-11 which is a familiar

convolutional neural network [29] and for MNIST we

trained DNNs with 784 × 512 × 256 × 10 with learning

rate 0.1 and Dropout probability 0.5. Also, the hidden

layers and output layer activation functions are Leaky

ReLU and Softmax, respectively. Furthermore, for

SPAMBASE we trained DNNs with 54 × 100 × 50 × 1

with learning rate 0.05 and Dropout probability 0.5. Also,

the hidden layers and output layer activation functions

are Leaky ReLU and Sigmoid, respectively. We

considered gradient descent as the optimization method

where the batch size and epoch number are 200 and 10,

respectively. For all the simulations, we set 𝛼 = 5 and we

consider the number of clients 10 and 100. Moreover, we

assume that all the clients are selected to send updates for

the server, i. e. 𝑀𝑡 = 𝑁.

In this paper, we consider four different scenarios,

namely, clean, byzantine, flipping, and noisy to evaluate

our proposed method. For the clean scenario, all of the

clients send good updates to the server. In the byzantine

case, some of the clients are bad and send updates that

are significantly different from the updates sent by the

good clients. In this case, we consider a Gaussian

distribution with mean zero and isotropic covariance

matrix with standard deviation 20. For the third scenario

that is flipping, we set all the labels of data points, used

by the selected bad clients to train the model, to zero.

Finally, in noisy case, we add uniform noise to all the

pixels of the noisy clients.

4. 2. Evaluation Results In this section, we

compare our proposed method (GFA) with the previous

works, namely, Multi-KRUM (MKRUM) [8], Federated

Averaging (FA) [1], and COMED [12]. Figures 3, 5, and

7 illustrate the test accuracy of all the algorithms for 10

clients as a function of the number of iterations on the

CIFAR-10, MNIST, and SPAMBASE datasets,

respectively. In addition, Figures 4, 6, and 8 illustrate the

test accuracy of all the algorithms for 100 clients as a

function of the number of iterations on the CIFAR-10,

MNIST, and SPAMBASE datasets, respectively.

According to these figures, we can analyze the

convergence of these algorithms. As can be observed, the

proposed algorithm converges for all the four scenarios

over both datasets while other algorithms do not

converge in at least one of the eight cases. For example,

the FA and COMED algorithms do not converge for

flipping scenarios on the CIFAR-10 while MKRUM and

COMED have the same convergence problem on the

MNIST. In addition, in the worst case, our algorithm

converges after a maximum of 30 iterations.

In addition, Figure 9 illustrates test accuracy as a

function of the number of iterations for different values

of 𝛼 on two datasets, namely, CIFAR-10 and

SPAMBASE. Accordingly, we set 𝛼 = 5 because it leads

to the best accuracy.

(a)

(b)

(c)

(d)

Figure 3. Test accuracy (%) as a function of the number of

iterations for 10 clients and for different algorithms on

CIFAR-10 for, a) clean (all benign clients), b) byzantine, c)

flipping, and d) noisy clients

Even in the cases where the other methods converge,

the proposed GFA algorithm is ultimately more accurate.

Tables 2, 3, and 4 compare the ultimate test accuracy of

the different algorithms over CIFAR-10, MNIST, and

SPAMBASE, respectively. Accordingly, for CIFAR-10,

838 E. Tahanian et al. / IJE TRANSACTIONS A: Basics Vol. 34, No. 04, (April 2021) 832-842

(a)

(b)

(c)

(d)

Figure 4. Test accuracy (%) as a function of the number of

iterations for 100 clients and for different algorithms on

CIFAR-10 for, a) clean (all benign clients), b) byzantine, c)

flipping, and d) noisy clients

the test accuracy of the proposed algorithm is at least

14%, 15.8%, and 2.3% better than the others for

byzantine, flipping, and noisy scenarios, respectively.

For this dataset and in the case of clean scenario, the

results show that the accuracy of the GFA is only 0.27%

less than the standard FA algorithm. On the other hand,

for MNIST, the simulations indicate a similar situation

where the accuracy of our method is at least 0.4%, 27%,

and 2.6% higher than the byzantine, flipping, and noisy

scenarios, respectively. Again, the accuracy of the FA

algorithm is a little (0.8%) better than the GFA algorithm

in the case of clean.

(a)

(b)

(c)

(d)

Figure 5. Test accuracy (%) as a function of the number of

iterations for 10 clients and for different algorithms on

MNIST for, a) clean (all benign clients), b) byzantine, c)

flipping, and d) noisy clients

E. Tahanian et al. / IJE TRANSACTIONS A: Basics Vol. 34, No. 04, (April 2021) 832-842 839

(a)

(b)

(c)

(d)

Figure 6. Test accuracy (%) as a function of the number of

iterations for 100 clients and for different algorithms on

MNIST for, a) clean (all benign clients), b) byzantine, c)

flipping, and d) noisy clients

(a)

(b)

(c)

(d)

Figure 7. Test accuracy (%) as a function of the number of

iterations for 10 clients and for different algorithms on

SPAMBASE for, a) clean (all benign clients), b) byzantine,

c) flipping, and d) noisy clients

(a)

(b)

840 E. Tahanian et al. / IJE TRANSACTIONS A: Basics Vol. 34, No. 04, (April 2021) 832-842

(c)

(d)

Figure 8. Test accuracy (%) as a function of the number of

iterations for 100 clients and for different algorithms on

SPAMBASE for, a) clean (all benign clients), b) byzantine,

c) flipping, and d) noisy clients

(a)

(b)

Figure 9. Test accuracy (%) as a function of the number of

iterations for different values of 𝛼 on a) CIFAR-10 and b)

SPAMBASE datasets

Furthermore, we investigated the detection rate for

bad clients in Table 5. According to this table, for all of

the scenarios containing malicious clients, the proposed

TABLE 2. The test accuracy of different algorithms for the

CIFAR-10 dataset

Algorithm Clean Byzantine Flipping Noisy

GFA 72.83 67.06 63.48 71.69

FA 73.03 52.49 54.78 70.02

COMED 62.06 58.63 56.84 62.09

MKRUM 54.76 55.32 43.93 53.13

TABLE 3. The test accuracy of different algorithms for the

MNIST dataset

Algorithm Clean Byzantine Flipping Noisy

GFA 98.09 98.01 98.23 98.09

FA 98.89 10.29 77.17 95.57

COMED 97.02 97.43 91.13 95.96

MKRUM 96.01 95.07 70.00 95.22

TABLE 4. The test accuracy of different algorithms for

SPAMBASE dataset

Algorithm Clean Byzantine Flipping Noisy

GFA 96.42 96.65 94.18 93.50

FA 97.19 10.91 86.98 91.13

COMED 95.74 96.24 88.97 92.48

MKRUM 91.64 91.53 90.88 90.58

TABLE 5. The detection rate of GFA algorithm for bad clients

on MNIST, CIFAR-10, and SPAMBASE datasets

Dataset Byzantine Flipping Noisy

MNIST 100% 100% 100%

CIFAR10 100% 100% 100%

SPAMBASE 100% 100% 100%

algorithm in this paper can detect 100% of the bad clients

for both datasets.

5. CONCLUSION

In this paper, we introduced a game-based robust

federated averaging algorithm to detect and discard bad

updates provided by the clients. The proposed method

uses an adaptive averaging method, in an iteration

manner, to highlight the effect of the good updates sent

by the majority of the clients. At the end of this iterative

algorithm, a trustworthiness is assigned to each client that

can be used to put the client in one of the good or bad

sets. Finally, the server considers the probability of

providing good updates by the clients to the model. These

E. Tahanian et al. / IJE TRANSACTIONS A: Basics Vol. 34, No. 04, (April 2021) 832-842 841

probabilities can be computed by considering a mixed-

strategy game between the central server and each client

that exists in the good client set. The valid actions of the

clients are to send good or bad updates while the server

can accept or ignore these updates. By employing the

Nash Equilibrium property, the server determines the

clients’ probability to provide good updates to the model.

In experiments, we considered four scenarios, clean,

byzantine, flipping, and noisy that were evaluated on

MNIST, SIFAR-10, and SPAMBASE datasets for 10 and

100 clients. For all of the scenarios and both datasets, our

algorithm converges after a maximum of 30 iterations. It

should be noted that in all cases, 100% of the bad clients

can be detected for both datasets. In addition, the test

accuracy of the proposed algorithm is at least 15.8% and

2.3% better than the others for flipping and noisy

scenarios, respectively.

In future work, we plan to use the Game Theory to

detect the backdoor attack where a malicious client can

use model replacement to introduce backdoor

functionality into the global model.

6. REFERENCES

1. McMahan, B., Moore, E., Ramage, D., Hampson, S. and y Arcas,

B.A., "Communication-efficient learning of deep networks from
decentralized data", in Artificial Intelligence and Statistics,

PMLR. 1273-1282.

2. Konečný, J., McMahan, H.B., Ramage, D. and Richtárik, P.,

"Federated optimization: Distributed machine learning for on-

device intelligence", arXiv preprint arXiv:1610.02527, Vol., No.,

(2016).

3. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D. and Shmatikov, V.,

"How to backdoor federated learning", in International

Conference on Artificial Intelligence and Statistics, PMLR.,

2938-2948.

4. Yang, Q., Liu, Y., Chen, T. and Tong, Y., "Federated machine

learning: Concept and applications", ACM Transactions on

Intelligent Systems and Technology (TIST), Vol. 10, No. 2,

(2019), 1-19. Doi: 10.1145/3298981

5. Bhagoji, A.N., Chakraborty, S., Mittal, P. and Calo, S.,
"Analyzing federated learning through an adversarial lens", in

International Conference on Machine Learning, PMLR. 634-643.

6. Li, T., Sahu, A.K., Talwalkar, A. and Smith, V., "Federated
learning: Challenges, methods, and future directions", IEEE

Signal Processing Magazine, Vol. 37, No. 3, (2020), 50-60. Doi:

10.1109/msp.2020.2975749

7. Sattler, F., Wiedemann, S., Müller, K.-R. and Samek, W., "Robust

and communication-efficient federated learning from non-iid

data", IEEE Transactions on Neural Networks and Learning

Systems, Vol. 31, No. 9, (2019), 3400-3413. Doi:

10.1109/tnnls.2019.2944481

8. Blanchard, P., El Mhamdi, E.M., Guerraoui, R. and Stainer, J.,
"Machine learning with adversaries: Byzantine tolerant gradient

descent", in Proceedings of the 31st International Conference on

Neural Information Processing Systems. Vol., No., (Year), 118-

128.

9. Damaskinos, G., El Mhamdi, E.M., Guerraoui, R., Guirguis,

A.H.A. and Rouault, S.L.A., "Aggregathor: Byzantine machine
learning via robust gradient aggregation", in The Conference on

Systems and Machine Learning (SysML), 2019. Vol., No. CONF,

(Year).

10. Mhamdi, E.M.E., Guerraoui, R. and Rouault, S., "The hidden

vulnerability of distributed learning in byzantium", arXiv preprint

arXiv:1802.07927, (2018).

11. Nash, J., "Non-cooperative games", Annals of Mathematics,

(1951), 286-295.

12. Konečný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh,

A.T. and Bacon, D., "Federated learning: Strategies for improving

communication efficiency", arXiv preprint arXiv:1610.05492,

(2016).

13. McMahan, H.B., Moore, E., Ramage, D. and y Arcas, B.A.,
"Federated learning of deep networks using model averaging",

arXiv preprint arXiv:1602.05629, (2016).

14. Chen, M., Mathews, R., Ouyang, T. and Beaufays, F., "Federated
learning of out-of-vocabulary words", arXiv preprint

arXiv:1903.10635, (2019).

15. Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F.,
Augenstein, S., Eichner, H., Kiddon, C. and Ramage, D.,

"Federated learning for mobile keyboard prediction", arXiv

preprint arXiv:1811.03604, (2018).

16. Wang, Y., "Co-op: Cooperative machine learning from mobile

devices", , (2017).

17. Yin, D., Chen, Y., Kannan, R. and Bartlett, P., "Byzantine-robust
distributed learning: Towards optimal statistical rates", in

International Conference on Machine Learning, PMLR., 5650-

5659.

18. Xie, C., Koyejo, S. and Gupta, I., "Zeno: Distributed stochastic

gradient descent with suspicion-based fault-tolerance", in

International Conference on Machine Learning, PMLR., 6893-

6901.

19. Sun, Z., Kairouz, P., Suresh, A.T. and McMahan, H.B., "Can you

really backdoor federated learning?", arXiv preprint

arXiv:1911.07963, (2019).

20. Kang, J., Xiong, Z., Niyato, D., Yu, H., Liang, Y.-C. and Kim,

D.I., "Incentive design for efficient federated learning in mobile
networks: A contract theory approach", in 2019 IEEE VTS Asia

Pacific Wireless Communications Symposium (APWCS), IEEE.,

1-5. Doi: 10.1109/vts-apwcs.2019.8851649

21. Feng, S., Niyato, D., Wang, P., Kim, D.I. and Liang, Y.-C., "Joint

service pricing and cooperative relay communication for

federated learning", in 2019 International Conference on Internet
of Things (iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and

Social Computing (CPSCom) and IEEE Smart Data (SmartData),
IEEE., 815-820. Doi:

10.1109/ithings/greencom/cpscom/smartdata.2019.00148

22. Zou, Y., Feng, S., Niyato, D., Jiao, Y., Gong, S. and Cheng, W.,
"Mobile device training strategies in federated learning: An

evolutionary game approach", in 2019 International Conference

on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and

Social Computing (CPSCom) and IEEE Smart Data (SmartData),

IEEE., 874-879. Doi:

10.1109/ithings/greencom/cpscom/smartdata.2019.00157

23. Limam, N. and Boutaba, R., "Assessing software service quality

and trustworthiness at selection time", IEEE Transactions on

Software Engineering, Vol. 36, No. 4, (2010), 559-574. Doi:

10.1109/tse.2010.2

24. Rehman, A.U., Jiang, A., Rehman, A. and Paul, A., "Weighted
based trustworthiness ranking in social internet of things by using

soft set theory", in 2019 IEEE 5th International Conference on

Computer and Communications (ICCC), IEEE., 1644-1648. Doi:

10.1109/iccc47050.2019.9064242

842 E. Tahanian et al. / IJE TRANSACTIONS A: Basics Vol. 34, No. 04, (April 2021) 832-842

25. De Kerchove, C. and Van Dooren, P., "Iterative filtering in
reputation systems", SIAM Journal on Matrix Analysis and

Applications, Vol. 31, No. 4, (2010), 1812-1834. Doi:

10.1137/090748196

26. Myerson, R.B., "Game theory, Harvard university press, (2013).

Doi: 10.1002/9781118547168

27. Krizhevsky, A. and Hinton, G., "Learning multiple layers of

features from tiny images", Vol., No., (2009).

28. LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., "Gradient-
based learning applied to document recognition", Proceedings of

the IEEE, Vol. 86, No. 11, (1998), 2278-2324. Doi:

10.1109/5.726791

29. Liu, S. and Deng, W., "Very deep convolutional neural network

based image classification using small training sample size", in

2015 3rd IAPR Asian conference on pattern recognition (ACPR),

IEEE., 730-734. Doi: 10.1109/acpr.2015.7486599

Persian Abstract

 چکیده

گردد. این درحالیست ارسال این مدلها به سرور مرکزی فراهم میبا استفاده ازیادگیری فدراسیونی قابلیت تجمیع مدلهای آموزش یافته بر روی تعداد زیادی از کلاینتها از طریق

شود. روشهای یادگیری فدراسیونی به شدت درمعرض حملات قرار دارند. در این که همچنان حریم خصوصی کلاینتها حفظ خواهد شد، زیرا تنها مدلها به سرور ارسال می

گیری را با یک بازی با سناریوی میکس که در آن هر کلاینت و سرور به عنوان ه بازیها ارائه میکنیم. ما فرآیند میانگینگیری مقاوم براساس نظریمقاله ما یک الگوریتم میانگین

باشند. نتایج ها می های خوب و بد و نیز اعمال سرور شامل پذیرش یا رد این بروزرسانیبازیکن می باشند، مدل میکنیم. اعمال مجاز کلاینتها در بازی شامل ارسال بروزرسانی

ی باشد. مطابق این نتایج، روش پیشنهادی آزمایشها نشان میدهد به کار بردن روش میانگین گیری مبتنی بر نظریه بازیها بسیار مقاومتر از روشهای مشابه در مقابل کلاینتها مخرب م

 2.3درصد و 15.8دهد. همچنین روش ما از نظر دقت به ترتیب حداکثر درصد از کلاینتهای مخرب را تشخیص 100تکرار همگرا میشود و قادر است 30حداکثر بعداز

 درصد بهتر از روشهای پیشین برای دو سناریوی فلیپینگ و نویزی می باشد.

