Photo-degradation of P-Nitro Toluene Using Modified Bentonite Based Nano-TiO2 Photocatalyst in Aqueous Solution

Document Type : Original Article

Authors

Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran

Abstract

In recent decades, Iran has been facing severe water deficiency. In all countries, industrial plants are the most water-consuming sectors; thus, industrial wastewater treatment is always a essential subject. Nitro-Toluene derivatives are extensively used in industries, especially the military industry, which itself has an abundant share in industrial wastewater contamination. These compounds are extremely dangerous for living beings and can have irreparable effects, so eradication of them in industrial wastewater is necessary. Photocatalytic processes are one of the particular approaches in industrial wastewater treatment from the advanced oxidation processes subdivision. One of the prominent and most widely used photocatalysts in this process is Titanium Dioxide (TiO2) . This research aims at the investigations for the modification of  TiO2/Bentonite (TB) catalysts for attaining more economical saving and degradation stabilization conditions. To achieve this goal, the Bentonite and TiO2 photocatalyst was synthesized by a co-precipitation procedure, and its catalytic activity on Para Nitro-Toluene (PNT) degradation was examined. The designed TB photocatalyst is made of 5, 10 and 20 % of TB. A suspension reactor and the spectrophotometry was applied for specifying the extent of the degradation. Characterization of modified catalyst was conducted by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and energy dispersive X-ray (EDX). The results highlight that with increasing TiO2 percent, degradation rate augmented, and the highest degradation was attained for TB 20% at 59%. However, Under the same conditions, for pure TiO2, the degradation rate is 64%, but with more TiO2 consumption and time. Finally, in order to further confirm the extent of the degradation, chemical oxygen demand (COD) test was performed on the TA20 sample. The results showed that about 53% of PNT has been converted to minerals.

Keywords


1.     Mohamadiyan, J., Shams-Khoramabadi, G., Mussavi, SA., Kamarehie,  B., Dadban Shahamat, Y., Godini, H., "Aniline degradation using advanced oxidation process  by UV/Peroxy disulfate  from aqueous solution", International Journal of Engineering, Transactions B: Applications, Vol. 30, No. 5 (2017), 684-690, doi: 10.5829/idosi.ije.2017.30.05b.08
2.     Mohadesi, M. and Shokri, A., "Treatment of oil refinery wastewater by photo-Fenton process using Box–Behnken design method: kinetic study and energy consumption", International Journal of Environmental Science and Technology, Vol. 16, No. 11, (2019), 7349-7356.,
3.     Taghavi, K., Naghipour, D., Mohagheghian, A and Moslemzadeh, M., "Photochemical Degradation of 2,4-dichlorophenol in Aqueous Solutions by Fe2+/Peroxydisulfate/UV Process", International Journal of Engineering, Transactions A: Basics,  Vol. 30, No. 1, (2017), 15-22, doi: 10.5829/idosi.ije.2017.30.01a.03
4.     Ludwichk, R., Helferich, O.K., Kist, C.P., Lopes, A.C., Cavasotto, T., Silva, D.C. and Barreto-Rodrigues, M., "Characterization and Photocatalytic Treatability of Red Water from Brazilian TNT Industry", Journal of Hazardous Materials,  Vol. 293, (2015), 81-86, doi:10.1016/j.jhazmat.2015.03.017.
5.     Shokri, A., "Employing Sono-Fenton Process for Degradation of 2-Nitrophenol in Aqueous Environment Using Box–Behnken Design Method and Kinetic Study", Russian Journal of Physical Chemistry A,  Vol. 93, No. 2, (2019), 243-249, doi:10.1134/S003602441902002X.
6.     Hosseini, J. and Shokri, A., "Employing UV/H2O2 Process for Degradation of 2, 4-Diaminotoluene in Synthetic Wastewater", Archives of Hygiene Sciences,  Vol. 6, No. 2, (2017), 121-127,
7.     Shokri, A. and Mahanpoor, K., "Removal of Ortho-Toluidine from Industrial Wastewater by UV/TiO2 Process", Journal of Chemical Health Risks, Vol. 6, No. 3, (2016), 213-223, doi:10.22034/jchr.2016.544149.
8.     Ayoub, K., van Hullebusch, E.D., Cassir, M. and Bermond, A., "Application of Advanced Oxidation Processes for TNT Removal: A Review", Journal of Hazardous Materials,  Vol. 178, No. 1-3, (2010), 10-28, doi:10.1016/j.jhazmat.2010.02.042.
9.     Huang, N., Wang, T., Wang, W.-L., Wu, Q.-Y., Li, A. and Hu, H.-Y., "UV/Chlorine as an Advanced Oxidation Process for the Degradation of Benzalkonium Chloride: Synergistic Effect, Transformation Products and Toxicity Evaluation", Water Research,  Vol. 114, (2017), 246-253, doi:10.1016/j.watres.2017.02.015.
10.   Lee, S.-Y. and Park, S.-J., "TiO2 Photocatalyst for Water Treatment Applications", Journal of Industrial and Engineering Chemistry,  Vol. 19, No. 6, (2013), 1761-1769, doi:10.1016/j.jiec.2013.07.012.
11.   Qi, W., Zhang, F., An, X., Liu, H. and Qu, J., "Oxygen Vacancy Modulation of {010}-dominated TiO2 for Enhanced Photodegradation of Sulfamethoxazole", Catalysis Communications, Vol. 118, (2019), 35-38, doi:10.1016/j.catcom.2018.09.014.
12.   Trckova, M., Matlova, L. and Dvorska, L., "Kaolin, Bentonite, and Zeolites as Feed Supplements for Animals: Health Advantages and Risks: A Review", Veterinarni Medicina-UZPI (Czech Republic),  (2004),
13.   Nasirian, M., Bustillo-Lecompte, C.F. and Mehrvar, M., "Photocatalytic Efficiency of Fe2O3/TiO2 for the Degradation of Typical Dyes in Textile Industries: Effects of Calcination Temperature and UV-assisted Thermal Synthesis", Journal of Environmental Management,  Vol. 196, (2017), 487-498, doi:10.1016/j.jenvman.2017.03.030.
14.   Setthaya, N., Chindaprasirt, P., Yin, S. and Pimraksa, K., "TiO2-zeolite Photocatalysts Made of Metakaolin and Rice Husk Ash for Removal of Methylene Blue Dye", Powder Technology,  Vol. 313, (2017), 417-426, doi:10.1016/j.powtec.2017.01.014.
15.   Hoseini, S.N., Pirzaman, A.K., Aroon, M.A. and Pirbazari, A.E., "Photocatalytic Degradation of 2,4-dichlorophenol by Co-doped TiO2 (Co/TiO2) Nanoparticles and Co/TiO2 Containing Mixed Matrix Membranes", Journal of Water Process Engineering,  Vol. 17, (2017), 124-134, doi:10.1016/j.jwpe.2017.02.015.
16.   Gharibshahian, E., "The Effect of Polyvinyl Alcohol Concentration on the Growth Kinetics of KTiOPO4 Nanoparticles Synthesized by the Co-precipitation Method", HighTech and Innovation Journal,  Vol. 1, No. 4, (2020), 187-193, doi:10.28991/HIJ-2020-01-04-06.
17.   Theingi, M., Tun, K.T. and Aung, N.N., "Preparation, Characterization and Optical Property of LaFeO3 Nanoparticles via Sol-Gel Combustion Method", SciMedicine Journal,  Vol. 1, No. 3, (2019), 151-157, doi:10.28991/SciMedJ-2019-0103-5.
18.   Aby, H., Kshirsagar, A. and Khanna, P., "Plasmon Mediated Photocatalysis by Solar Active Ag/ZnO Nanostructures: Degradation of Organic Pollutants in Aqueous Conditions", J Mater Sci Nanotechnol,  Vol. 4, No. 1, (2016), 103,
19.   Rosales, B.S., Moreira del Rio, J., Guayaquil, J.F. and de Lasa, H., "Photodegradation Efficiencies in a Photo-CREC Water-II Reactor Using Several TiO2 Based Catalysts", International Journal of Chemical Reactor Engineering,  Vol. 14, No. 3, (2016), 685-701, doi:10.1515/ijcre-2016-0024.
20.   Rostami, M., Mazaheri, H., Hassani Joshaghani, A. and Shokri, A., "Using Experimental Design to Optimize the Photo-degradation of P-Nitro Toluene by Nano-TiO2 in Synthetic Wastewater", International Journal of Engineering, Transactions B: Applications, Vol. 32, No. 8, (2019), 1074-1081, doi:10.5829/ije.2019.32.08b.03.
21.   Mahlambi, M.M., Mishra, A.K., Mishra, S.B., Raichur, A.M., Mamba, B.B. and Krause, R.W., "Layer-by-Layer Self-Assembled Metal-Ion-(Ag-, Co-, Ni-, and Pd-) Doped TiO2 Nanoparticles: Synthesis, Characterisation, and Visible Light Degradation of Rhodamine B", Journal of Nanomaterials,  (2012), doi:10.1155/2012/302046.
22.   Daghrir, R., Drogui, P. and Robert, D., "Modified TiO2 For Environmental Photocatalytic Applications: A Review", Industrial & Engineering Chemistry Research,  Vol. 52, No. 10, (2013), 3581-3599, doi:10.1021/ie303468t.
23.   Wei, X., Zhu, G., Fang, J. and Chen, J., "Synthesis, Characterization, and Photocatalysis of Well-Dispersible Phase-Pure Anatase TiO2 Nanoparticles", International Journal of Photoenergy,  Vol. 2013, (2013), doi:10.1155/2013/726872.
24.   Malamis, S. and Katsou, E., "A Review on Zinc and Nickel Adsorption on Natural and Modified Zeolite, Bentonite and Vermiculite: Examination of Process Parameters, Kinetics and Isotherms", Journal of Hazardous Materials,  Vol. 252-253, (2013), 428-461, doi:10.1016/j.jhazmat.2013.03.024.
25.   Kumar, P.M., Badrinarayanan, S. and Sastry, M., "Nanocrystalline TiO2 Studied by Optical, FTIR and X-ray Photoelectron Spectroscopy: Correlation to Presence of Surface States", Thin Solid Films,  Vol. 358, No. 1, (2000), 122-130, doi:10.1016/S0040-6090(99)00722-1.
26.   Paluszkiewicz, C., Holtzer, M. and Bobrowski, A., "FTIR Analysis of Bentonite in Moulding Sands", Journal of Molecular Structure,  Vol. 880, No. 1, (2008), 109-114, doi:10.1016/j.molstruc.2008.01.028.
27.   Shokri, A., "An Investigation of Corrosion and Sedimentation in the Air Cooler Tubes of Benzene Drying Column in Linear Alkyl Benzene Production Plant", Chemical Papers,  Vol. 73, No. 9, (2019), 2265-2274,
28.   Li, W.-C., Comotti, M. and Schüth, F., "Highly Reproducible Syntheses of Active Au/TiO2 Catalysts for Co Oxidation by Deposition–Precipitation or Impregnation", Journal of Catalysis,  Vol. 237, No. 1, (2006), 190-196, doi:10.1016/j.jcat.2005.11.006.
29.   Shokri, A. and Mahanpoor, K., "Degradation of Ortho-Toluidine from Aqueous Solution by the TiO2/O3 Process", International Journal of Industrial Chemistry,  Vol. 8, No. 1, (2017), 101-108, doi:10.1007/s40090-016-0110-z.
30.   Shokri, A., Moradi, H., Abdouss, M. and Nasernejad, B., "Employing UV/Periodate Process for Degradation of p-chloronitrobenzene in Aqueous Environment", Desalination and Water Treatment, Vol. 205, (2020), 264-274, doi:10.5004/dwt.2020.26384.
31.   Bayarri, B., Gimenez, J., Curco, D. and Esplugas, S., "Photocatalytic Degradation of 2, 4-dichlorophenol by TiO2/UV: Kinetics, Actinometries and Models", Catalysis Today,  Vol. 101, No. 3-4, (2005), 227-236, doi:10.1016/j.cattod.2005.03.019.
32.   Shokri, A. and Joshagani, A.H., "Using Microwave Along with TiO2 for Degradation of 4-chloro-2-nitrophenol in Aqueous Environment", Russian Journal of Applied Chemistry,  Vol. 89, No. 12, (2016), 1985-1990, doi:10.1134/S1070427216120090.
33.   Beridze, M., Kalandia, A., Japaridze, I., Vanidze, M., Varshanidze, N., Turmanidze, N., Dolidze, K., Diasamidze, I. and Jakeli, E., "Phytochemical Study of Endemic Species Helleborus Caucasicus and Helleborus Abchasicus", HighTech and Innovation Journal,  Vol. 1, No. 1, (2020), 28-32, doi:10.28991/HIJ-2020-01-01-04.
34.   Manikandan, G., Yuvashree, M., Sangeetha, A., Bhuvana, K. and Nayak, S.K., "Liver Tissue Regeneration Using Nano Silver Impregnated Sodium Alginate/PVA Composite Nanofibres", SciMedicine Journal,  Vol. 2, No. 1, (2020), 16-21, doi:10.28991/SciMedJ-2020-0201-3.
 
1.     Mohamadiyan, J., Shams-Khoramabadi, G., Mussavi, SA., Kamarehie,  B., Dadban Shahamat, Y., Godini, H., "Aniline degradation using advanced oxidation process  by UV/Peroxy disulfate  from aqueous solution", International Journal of Engineering, Transactions B: Applications, Vol. 30, No. 5 (2017), 684-690, doi: 10.5829/idosi.ije.2017.30.05b.08
2.     Mohadesi, M. and Shokri, A., "Treatment of oil refinery wastewater by photo-Fenton process using Box–Behnken design method: kinetic study and energy consumption", International Journal of Environmental Science and Technology, Vol. 16, No. 11, (2019), 7349-7356.,
3.     Taghavi, K., Naghipour, D., Mohagheghian, A and Moslemzadeh, M., "Photochemical Degradation of 2,4-dichlorophenol in Aqueous Solutions by Fe2+/Peroxydisulfate/UV Process", International Journal of Engineering, Transactions A: Basics,  Vol. 30, No. 1, (2017), 15-22, doi: 10.5829/idosi.ije.2017.30.01a.03
4.     Ludwichk, R., Helferich, O.K., Kist, C.P., Lopes, A.C., Cavasotto, T., Silva, D.C. and Barreto-Rodrigues, M., "Characterization and Photocatalytic Treatability of Red Water from Brazilian TNT Industry", Journal of Hazardous Materials,  Vol. 293, (2015), 81-86, doi:10.1016/j.jhazmat.2015.03.017.
5.     Shokri, A., "Employing Sono-Fenton Process for Degradation of 2-Nitrophenol in Aqueous Environment Using Box–Behnken Design Method and Kinetic Study", Russian Journal of Physical Chemistry A,  Vol. 93, No. 2, (2019), 243-249, doi:10.1134/S003602441902002X.
6.     Hosseini, J. and Shokri, A., "Employing UV/H2O2 Process for Degradation of 2, 4-Diaminotoluene in Synthetic Wastewater", Archives of Hygiene Sciences,  Vol. 6, No. 2, (2017), 121-127,
7.     Shokri, A. and Mahanpoor, K., "Removal of Ortho-Toluidine from Industrial Wastewater by UV/TiO2 Process", Journal of Chemical Health Risks, Vol. 6, No. 3, (2016), 213-223, doi:10.22034/jchr.2016.544149.
8.     Ayoub, K., van Hullebusch, E.D., Cassir, M. and Bermond, A., "Application of Advanced Oxidation Processes for TNT Removal: A Review", Journal of Hazardous Materials,  Vol. 178, No. 1-3, (2010), 10-28, doi:10.1016/j.jhazmat.2010.02.042.
9.     Huang, N., Wang, T., Wang, W.-L., Wu, Q.-Y., Li, A. and Hu, H.-Y., "UV/Chlorine as an Advanced Oxidation Process for the Degradation of Benzalkonium Chloride: Synergistic Effect, Transformation Products and Toxicity Evaluation", Water Research,  Vol. 114, (2017), 246-253, doi:10.1016/j.watres.2017.02.015.
10.   Lee, S.-Y. and Park, S.-J., "TiO2 Photocatalyst for Water Treatment Applications", Journal of Industrial and Engineering Chemistry,  Vol. 19, No. 6, (2013), 1761-1769, doi:10.1016/j.jiec.2013.07.012.
11.   Qi, W., Zhang, F., An, X., Liu, H. and Qu, J., "Oxygen Vacancy Modulation of {010}-dominated TiO2 for Enhanced Photodegradation of Sulfamethoxazole", Catalysis Communications, Vol. 118, (2019), 35-38, doi:10.1016/j.catcom.2018.09.014.
12.   Trckova, M., Matlova, L. and Dvorska, L., "Kaolin, Bentonite, and Zeolites as Feed Supplements for Animals: Health Advantages and Risks: A Review", Veterinarni Medicina-UZPI (Czech Republic),  (2004),
13.   Nasirian, M., Bustillo-Lecompte, C.F. and Mehrvar, M., "Photocatalytic Efficiency of Fe2O3/TiO2 for the Degradation of Typical Dyes in Textile Industries: Effects of Calcination Temperature and UV-assisted Thermal Synthesis", Journal of Environmental Management,  Vol. 196, (2017), 487-498, doi:10.1016/j.jenvman.2017.03.030.
14.   Setthaya, N., Chindaprasirt, P., Yin, S. and Pimraksa, K., "TiO2-zeolite Photocatalysts Made of Metakaolin and Rice Husk Ash for Removal of Methylene Blue Dye", Powder Technology,  Vol. 313, (2017), 417-426, doi:10.1016/j.powtec.2017.01.014.
15.   Hoseini, S.N., Pirzaman, A.K., Aroon, M.A. and Pirbazari, A.E., "Photocatalytic Degradation of 2,4-dichlorophenol by Co-doped TiO2 (Co/TiO2) Nanoparticles and Co/TiO2 Containing Mixed Matrix Membranes", Journal of Water Process Engineering,  Vol. 17, (2017), 124-134, doi:10.1016/j.jwpe.2017.02.015.
16.   Gharibshahian, E., "The Effect of Polyvinyl Alcohol Concentration on the Growth Kinetics of KTiOPO4 Nanoparticles Synthesized by the Co-precipitation Method", HighTech and Innovation Journal,  Vol. 1, No. 4, (2020), 187-193, doi:10.28991/HIJ-2020-01-04-06.
17.   Theingi, M., Tun, K.T. and Aung, N.N., "Preparation, Characterization and Optical Property of LaFeO3 Nanoparticles via Sol-Gel Combustion Method", SciMedicine Journal,  Vol. 1, No. 3, (2019), 151-157, doi:10.28991/SciMedJ-2019-0103-5.
18.   Aby, H., Kshirsagar, A. and Khanna, P., "Plasmon Mediated Photocatalysis by Solar Active Ag/ZnO Nanostructures: Degradation of Organic Pollutants in Aqueous Conditions", J Mater Sci Nanotechnol,  Vol. 4, No. 1, (2016), 103,
19.   Rosales, B.S., Moreira del Rio, J., Guayaquil, J.F. and de Lasa, H., "Photodegradation Efficiencies in a Photo-CREC Water-II Reactor Using Several TiO2 Based Catalysts", International Journal of Chemical Reactor Engineering,  Vol. 14, No. 3, (2016), 685-701, doi:10.1515/ijcre-2016-0024.
20.   Rostami, M., Mazaheri, H., Hassani Joshaghani, A. and Shokri, A., "Using Experimental Design to Optimize the Photo-degradation of P-Nitro Toluene by Nano-TiO2 in Synthetic Wastewater", International Journal of Engineering, Transactions B: Applications, Vol. 32, No. 8, (2019), 1074-1081, doi:10.5829/ije.2019.32.08b.03.
21.   Mahlambi, M.M., Mishra, A.K., Mishra, S.B., Raichur, A.M., Mamba, B.B. and Krause, R.W., "Layer-by-Layer Self-Assembled Metal-Ion-(Ag-, Co-, Ni-, and Pd-) Doped TiO2 Nanoparticles: Synthesis, Characterisation, and Visible Light Degradation of Rhodamine B", Journal of Nanomaterials,  (2012), doi:10.1155/2012/302046.
22.   Daghrir, R., Drogui, P. and Robert, D., "Modified TiO2 For Environmental Photocatalytic Applications: A Review", Industrial & Engineering Chemistry Research,  Vol. 52, No. 10, (2013), 3581-3599, doi:10.1021/ie303468t.
23.   Wei, X., Zhu, G., Fang, J. and Chen, J., "Synthesis, Characterization, and Photocatalysis of Well-Dispersible Phase-Pure Anatase TiO2 Nanoparticles", International Journal of Photoenergy,  Vol. 2013, (2013), doi:10.1155/2013/726872.
24.   Malamis, S. and Katsou, E., "A Review on Zinc and Nickel Adsorption on Natural and Modified Zeolite, Bentonite and Vermiculite: Examination of Process Parameters, Kinetics and Isotherms", Journal of Hazardous Materials,  Vol. 252-253, (2013), 428-461, doi:10.1016/j.jhazmat.2013.03.024.
25.   Kumar, P.M., Badrinarayanan, S. and Sastry, M., "Nanocrystalline TiO2 Studied by Optical, FTIR and X-ray Photoelectron Spectroscopy: Correlation to Presence of Surface States", Thin Solid Films,  Vol. 358, No. 1, (2000), 122-130, doi:10.1016/S0040-6090(99)00722-1.
26.   Paluszkiewicz, C., Holtzer, M. and Bobrowski, A., "FTIR Analysis of Bentonite in Moulding Sands", Journal of Molecular Structure,  Vol. 880, No. 1, (2008), 109-114, doi:10.1016/j.molstruc.2008.01.028.
27.   Shokri, A., "An Investigation of Corrosion and Sedimentation in the Air Cooler Tubes of Benzene Drying Column in Linear Alkyl Benzene Production Plant", Chemical Papers,  Vol. 73, No. 9, (2019), 2265-2274,
28.   Li, W.-C., Comotti, M. and Schüth, F., "Highly Reproducible Syntheses of Active Au/TiO2 Catalysts for Co Oxidation by Deposition–Precipitation or Impregnation", Journal of Catalysis,  Vol. 237, No. 1, (2006), 190-196, doi:10.1016/j.jcat.2005.11.006.
29.   Shokri, A. and Mahanpoor, K., "Degradation of Ortho-Toluidine from Aqueous Solution by the TiO2/O3 Process", International Journal of Industrial Chemistry,  Vol. 8, No. 1, (2017), 101-108, doi:10.1007/s40090-016-0110-z.
30.   Shokri, A., Moradi, H., Abdouss, M. and Nasernejad, B., "Employing UV/Periodate Process for Degradation of p-chloronitrobenzene in Aqueous Environment", Desalination and Water Treatment, Vol. 205, (2020), 264-274, doi:10.5004/dwt.2020.26384.
31.   Bayarri, B., Gimenez, J., Curco, D. and Esplugas, S., "Photocatalytic Degradation of 2, 4-dichlorophenol by TiO2/UV: Kinetics, Actinometries and Models", Catalysis Today,  Vol. 101, No. 3-4, (2005), 227-236, doi:10.1016/j.cattod.2005.03.019.
32.   Shokri, A. and Joshagani, A.H., "Using Microwave Along with TiO2 for Degradation of 4-chloro-2-nitrophenol in Aqueous Environment", Russian Journal of Applied Chemistry,  Vol. 89, No. 12, (2016), 1985-1990, doi:10.1134/S1070427216120090.
33.   Beridze, M., Kalandia, A., Japaridze, I., Vanidze, M., Varshanidze, N., Turmanidze, N., Dolidze, K., Diasamidze, I. and Jakeli, E., "Phytochemical Study of Endemic Species Helleborus Caucasicus and Helleborus Abchasicus", HighTech and Innovation Journal,  Vol. 1, No. 1, (2020), 28-32, doi:10.28991/HIJ-2020-01-01-04.
34.   Manikandan, G., Yuvashree, M., Sangeetha, A., Bhuvana, K. and Nayak, S.K., "Liver Tissue Regeneration Using Nano Silver Impregnated Sodium Alginate/PVA Composite Nanofibres", SciMedicine Journal,  Vol. 2, No. 1, (2020), 16-21, doi:10.28991/SciMedJ-2020-0201-3.