Modeling and Optimization of Charge Materials Ranges in Converter Furnace with Enhanced Passivation Time in Copper Electrorefining Process: A Mixture Design Approach

Document Type : Original Article


1 Department of materials science and Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

2 Research & Development Center, Shahrebabak Copper Complex, National Iranian Copper Industries Company, Kerman, Iran

3 Senior metallurgical engineer, Process control unit, Khatoonabad copper refinery, Shahrebabak copper complex, National Iranian copper industries company, Kerman, Iran


In this study, the design of experiments is used to study and model the time of passivation in copper electrorefining as a function of the charge of melting furnace through the preparation of copper casting anodes. As a result of optimization for the proposed optimized anodes, the charge percent values of concentrate (Co), refinery scrap (RS), and non-refinery scrap (NRS) were proposed equals to 69.1, 0.574 and 30.32 (wt.%), respectively. Experimental data confirmed the enhanced passivation time of the proposed anode was 6520 s. Also, it was observed that the molar ratio of As/(Bi+Sb) and Ag/(Se+Te) are the key factors in passivation time. Finally, the relation of passivation time (seconds) with the charge of melting furnace is proposed as:  t (s)= - 3728.98 × Co + 4640.00 × RS + 3141.00 × NRS + 17763.27 × Co × RS + 25547.65 × Co × NRS - 1758.00 × RS × NRS. Moreover, adding of As ingot in casting anodes as a dose dependent of non-refinery scrap portion in the input charge of the melting unit can effectively prolong the time of passivation.


1.     Schlesinger, M.E., King, M.J. and Davenport, W.G., "Extractive metallurgy of copper, Elsevier,  (2011), doi: 10.1016/C2010-0-64841-3.
2.     Jackson, E., "Hydrometallurgical extraction and reclamation, Ellis Horwood Chichester,  Vol. 204, (1986), doi: 10.1002/aic.690330923.
3.     Li, L., Li, H.-j., Qiu, S.-w. and Wang, H., "Effect of additives on anode passivation in direct electrolysis process of copper—nickel based alloy scraps", Journal of Central South University,  Vol. 25, No. 4, (2018), 754-763, doi: 10.1007/s11771-018-3780-1.
4.     Jarjoura, G. and Kipouros, G.J., "Electrochemical studies on the effect of nickel on copper anode passivation in a copper sulphate solution", Canadian Metallurgical Quarterly,  Vol. 45, No. 3, (2006), 283-294, doi: 10.1179/cmq.2006.45.3.283.
5.     Safizadeh, F. and Ghali, E., "Monitoring passivation of cu–sb and cu–pb anodes during electrorefining employing electrochemical noise analyses", Electrochimica Acta,  Vol. 56, No. 1, (2010), 93-101, doi: 10.1016/j.electacta.2010.09.046.
6.     Safizadeh, F. and Ghali, E., "Electrochemical noise of copper anode behaviour in industrial electrolyte using wavelet analysis", Transactions of Nonferrous Metals Society of China,  Vol. 23, No. 6, (2013), 1854-1862, doi: 10.1016/S1003-6326(13)62670-9.
7.     Moats, M.S. and Hiskey, J.B., "The role of electrolyte additives on passivation behaviour during copper electrorefining", Canadian Metallurgical Quarterly,  Vol. 39, No. 3, (2000), 297-306, doi: 10.1179/cmq.2000.39.3.297.
8.     Moats, M.S., Hiskey, J.B. and Collins, D.W., "The effect of copper, acid, and temperature on the diffusion coefficient of cupric ions in simulated electrorefining electrolytes", Hydrometallurgy,  Vol. 56, No. 3, (2000), 255-268, doi: 10.1016/S0304-386X(00)00070-0.
9.     Minotas, J.C., Djellab, H. and Ghali, E., "Anodic behaviour of copper electrodes containing arsenic or antimony as impurities", Journal of Applied Electrochemistry,  Vol. 19, No. 5, (1989), 777-783, doi: 10.1007/BF01320654.
10.   Bounoughaz, M., Manzini, M. and Ghali, E., "Behaviour of copper anodes containing oxygen, silver and selenium impurities during electro-refining", Canadian Metallurgical Quarterly,  Vol. 34, No. 1, (1995), 21-26, doi: 10.1179/cmq.1995.34.1.21.
11.   Abe, S., Burrows, B. and Ettel, V., "Anode passivation in copper refining", Canadian Metallurgical Quarterly,  Vol. 19, No. 3, (1980), 289-296, doi: 10.1179/cmq.1980.19.3.289.
12.   Chen, T.T. and Dutrizac, J.E., "A mineralogical study of the deportment and reaction of silver during copper electrorefining", Metallurgical and Materials Transactions B,  Vol. 20, No. 3, (1989), 345-361, doi: 10.1007/BF02696987.
13.   Sȩdzimir, J. and Gumowska, W., "Influence of electrolysis variables on the passivation time of copper anodes in copper electrorefining", Hydrometallurgy,  Vol. 24, No. 2, (1990), 203-217, doi: 10.1016/0304-386X(90)90087-I.
14.   Cheng, X. and Hiskey, J.B., "Fundamental studies of copper anode passivation during electrorefining: Part i. Development of techniques", Metallurgical and Materials Transactions B,  Vol. 27, No. 3, (1996), 393-398, doi: 10.1007/BF02914903.
15.   Box, G.E.P. and Wilson, K.B., "On the experimental attainment of optimum conditions", Journal of the Royal Statistical Society: Series B (Methodological),  Vol. 13, No. 1, (1951), 1-38, doi: 10.1111/j.2517-6161.1951.tb00067.x.
16.   Khaskhoussi, A., Calabrese, L., Bouhamed, H., Kamoun, A., Proverbio, E. and Bouaziz, J., "Mixture design approach to optimize the performance of tio2 modified zirconia/alumina sintered ceramics", Materials & Design,  Vol. 137, (2018), 1-8, doi: 10.1016/j.matdes.2017.10.010.
17.   Khazaei Feizabad, M.H., Sarvestani, E. and Khayati, G.R., "Modeling and optimization of chemical composition of nano/amorphous fea.Nib.Nbc.Zrd alloy prepared via high-energy ball milling with enhanced soft magnetic properties; a mixture design approach", Journal of Alloys and Compounds,  Vol. 841, No., (2020), 155646, doi: 10.1016/j.jallcom.2020.155646.
18.   Zhang, D., Zhang, Z., Cheng, T. and Zhao, X., "Multi-factorial analysis on vault stability of an unsymmetrically loaded tunnel using response surface method", International Journal of Engineering, Transactions B: Applications,  Vol. 32, No. 11, (2019), 1570-1576, doi: 10.5829/IJE.2019.32.11B.08.
19.   Mahmood Ali, S., "Optimization of centrifugal casting parameters of alsi alloy by using the response surface methodology", International Journal of Engineering, Transactions B: Applications,  Vol. 32, No. 11, (2019), 1516-1526, doi: 10.5829/IJE.2019.32.11B.02.
20.   Yousefi, M., Safikhani, H., Jabbari, E., Yousefi, M. and Tahmsbi, V., "Numerical modeling and optimization of respirational emergency drug delivery device using computational fluid dynamics and response surface method", International Journal of Engineering, Transactions B: Applications, Vol. 34, No. 2, (2021), 547-555, doi: 10.5829/IJE.2021.34.02B.28.
21.   Eriksson, L., Johansson, E. and Wikström, C., "Mixture design—design generation, pls analysis, and model usage", Chemometrics and Intelligent Laboratory Systems,  Vol. 43, No. 1-2, (1998), 1-24, doi: 10.1016/S0169-7439(98)00126-9.
22.   Muteki, K., MacGregor, J.F. and Ueda, T., "Mixture designs and models for the simultaneous selection of ingredients and their ratios", Chemometrics and Intelligent Laboratory Systems,  Vol. 86, No. 1, (2007), 17-25, doi: 10.1016/j.chemolab.2006.08.003.
23.   Petkova, E.N., "Mechanisms of floating slime formation and its removal with the help of sulphur dioxide during the electrorefining of anode copper", Hydrometallurgy,  Vol. 46, No. 3, (1997), 277-286, doi: 10.1016/S0304-386X(97)00024-8.