Design and Analysis of High Efficiency Perovskite Solar Cells with Light Trapping Nano-textured Substrates

Document Type : Original Article

Authors

Department of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran

Abstract

Recently, the utilization of hybrid organic-inorganic perovskite solar cells under advanced light management designs have attracted intensive attention.  In this study, a three-dimensional (3D) finite element method (FEM) technique was used in the COMSOL Multiphysics simulation package to investigate coupled optical and electrical characteristics of perovskite solar cells (PSCs) with light trapping nanostructures. Upon the use of nano-textured fluorine-doped tin oxide (FTO) substrates, we propose two architectures which can guide and trap the light at nanometer dimensions. Two proposed PSCs i.e. concave and trapezoidal structures are compared to the planar structure in order to investigate the effects of using nanostructured substrates on the optoelectronic performance of PSCs. Optical analysis reveals that using optimized concave and trapezoidal structures can enhance the light absorption up to 32 and 26%, respectively at the wavelength of 550 nm. Electrical simulations have shown that in addition to enhanced total carrier generation, the generated carriers can be effectively collected in the proposed nanostructured PSCs. Accordingly, the short-circuit current has risen from 20 mA for planar structure to 25.7 mA for concave and 23.2 mA for trapezoidal PSCs. After analyzing various heights and adopting optimum values, the power conversion efficiency for concave and trapezoidal PSCs experienced substantial increase of 5.5 and 3.5%, compared to the planar structure. These drastic improvements analyzed by coupled optical and electrical modelling of nanostructures can pave the way for further studies to fabricate high efficiency PSCs with nano-textured substrates as a light-trapping technique.

Keywords


  1. Ke, W., Stoumpos, C.C., Zhu, M., Mao, L., Spanopoulos, I., Liu, J., Kontsevoi, O.Y., Chen, M., Sarma, D., Zhang, Y. and Wasielewski, M.R., "Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en} FASnI3."Science Advances,Vol. 3, No. 8, (2017), e1701293. doi: 10.1126/sciadv.1701293
  2. Calvo, M. E., "Materials chemistry approaches to the control of the optical features of perovskite solar cells." Journal of Materials Chemistry A,Vol. 5, No. 39, (2017), 20561-20578. doi: 10.1039/C7TA05666D
  3. Fagiolari, L., and Federico, B., "Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells." Energy & Environmental Science,Vol.12, No. 12, (2019), 3437-3472. doi: 10.1039/C9EE02115A.
  4. Makableh, Y.F., Awad, I.A., Hassan, W. and Aljaiuossi, G., "Enhancement of the thermal properties of heterojunction perovskite solar cells by nanostructured contacts design." Solar Energy,Vol.202, (2020), 204-209. doi: 10.1016/j.solener.2020.04.002
  5. Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y. and Mitzi, D.B., "Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency." Advanced Energy Materials,Vol. 4, No. 7, (2014), 1301465. doi: 10.1002/aenm.201301465.
  6. Khalate, S.A., Kate, R.S. and Deokate, R.J., "A review on energy economics and the recent research and development in energy and the Cu2ZnSnS4 (CZTS) solar cells: A focus towards efficiency." Solar Energy,Vol. 169, (2018), 616-633. doi: 10.1016/j.solener.2018.05.036.
  7. Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells." Journal of the American Chemical Society,Vol. 131, No. 17, (2009), 6050-6051. doi: 10.1021/ja809598r.
  8. Zhang, F., Wang, Z., Zhu, H., Pellet, N., Luo, J., Yi, C., Liu, X., Liu, H., Wang, S., Li, X. and Xiao, Y., "Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials." Nano Energy,Vol. 41, (2017), 469-475. doi: 10.1016/j.nanoen.2017.09.035.
  9. Cahen, D., Zuo, C., Bolink, H.J., Han, H., Huang, J. and Ding, L., "Advances in perovskite solar cells." Advanced Science,Vol. 3, No. 7, (2016), 1500324. doi: 10.1002/advs.201500324.
  10. Schulze, P.S., Bett, A.J., Winkler, K., Hinsch, A., Lee, S., Mastroianni, S., Mundt, L.E., Mundus, M., Würfel, U., Glunz, S.W. and Hermle, M., "Novel low-temperature process for perovskite solar cells with a mesoporous TiO2 scaffold." ACS Applied Materials & Interfaces,Vol.9, No. 36, (2017), 30567-30574. doi: 10.1021/acsami.7b05718.
  11. Li, J. F., H. Y. Hao, J. B. Hao, L. Shi, J. J. Dong, H. Liu, and J. Xing. "Light trapping effect of textured FTO in perovskite solar cells." In IOP Conference Series: Materials Science and Engineering, Vol. 479, No. 1, 012046. IOP Publishing, (2019).
  12. Saidaminov, M.I., Williams, K., Wei, M., Johnston, A., Quintero-Bermudez, R., Vafaie, M., Pina, J.M., Proppe, A.H., Hou, Y., Walters, G. and Kelley, S.O., "Multi-cation perovskites prevent carrier reflection from grain surfaces." Nature Materials,Vol. 19, No. 4, (2020), 412-418. doi: 10.1038/s41563-019-0602-2.
  13. Tang, Z., Tress, W. and Inganäs, O., "Light trapping in thin film organic solar cells." Materials Today,Vol. 17, No. 8, (2014), 389-396.  doi: 10.1016/j.mattod.2014.05.008.
  14. Irandoost, R. and Soleimani-Amiri, S., "Design and analysis of high efficiency perovskite solar cell with ZnO nanorods and plasmonic nanoparticles." Optik,Vol. 202, (2020), 163598. doi: 10.1016/j.ijleo.2019.163598.
  15. Abdelraouf, O.A., Abdelrahaman, M.I. and Allam, N.K., "Plasmonic scattering nanostructures for efficient light trapping in flat czts solar cells." In Metamaterials XI,Vol. 10227, p. 1022712. International Society for Optics and Photonics, (2017), doi: 10.1117/12.2265249.
  16. Adinolfi, V., Peng, W., Walters, G., Bakr, O.M. and Sargent, E.H., "The electrical and optical properties of organometal halide perovskites relevant to optoelectronic performance." Advanced Materials,Vol. 30, No. 1, (2018), 1700764. doi: 10.1002/adma.201700764.
  17. Abdelraouf, O.A. and Allam, N.K., "Towards nanostructured perovskite solar cells with enhanced efficiency: Coupled optical and electrical modeling." Solar Energy,Vol. 137, (2016), 364-370. doi: 10.1016/j.solener.2016.08.039.
  18. Zandi, S. and Razaghi, M., "Finite element simulation of perovskite solar cell: A study on efficiency improvement based on structural and material modification." Solar Energy,Vol. 179, (2019), 298-306. doi: 10.1016/j.solener.2018.12.032.
  19. Wenger, S., Schmid, M., Rothenberger, G., Gentsch, A., Gratzel, M. and Schumacher, J.O., "Coupled optical and electronic modeling of dye-sensitized solar cells for steady-state parameter extraction." The Journal of Physical Chemistry C,Vol. 115, No. 20, (2011), 10218-10229. doi: 10.1021/jp111565q.
  20. Schöche, S., Hong, N., Khorasaninejad, M., Ambrosio, A., Orabona, E., Maddalena, P. and Capasso, F., "Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry." Applied Surface Science,Vol.421, (2017), 778-782. doi: 10.1016/j.apsusc.2017.01.035.
  21. Ball, J.M., Stranks, S.D., Hörantner, M.T., Hüttner, S., Zhang, W., Crossland, E.J., Ramirez, I., Riede, M., Johnston, M.B., Friend, R.H. and Snaith, H.J., "Optical properties and limiting photocurrent of thin-film perovskite solar cells." Energy & Environmental Science,Vol. 8, No. 2, (2015), 602-609. doi: 10.1039/C4EE03224A.
  22. Deceglie, M.G., Ferry, V.E., Alivisatos, A.P. and Atwater, H.A., "Design of nanostructured solar cells using coupled optical and electrical modeling." Nano Letters,Vol. 12, No. 6, (2012), 2894-2900. doi: 10.1021/nl300483y.
  23. Barrit, D., Cheng, P., Tang, M.C., Wang, K., Dang, H., Smilgies, D.M., Liu, S., Anthopoulos, T.D., Zhao, K. and Amassian, A., "Impact of the Solvation State of Lead Iodide on Its Two‐Step Conversion to MAPbI3: An In Situ Investigation." Advanced Functional Materials,Vol. 29, No. 47, (2019), 1807544. doi: 10.1002/adfm.201807544.