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This paper presents a predictive robust and stable approach for a two-machine flow shop scheduling
problem with machine disruption and uncertain job processing time. Indeed, a general approach is
proposed that can be used for robustness and stability optimization in an m-machine flow shop or job
shop scheduling problem. The robustness measure is the total expected realized completion time. The
expected sum of squared aberration between each jobs’ completion time in the realized and initial
schedules is the stability measure. We proposed and compared two methods to deal with such an NP-
hard problem; a method based on decomposing the problem into sub-problem and solving each sub-
problem, and a theorem-based method. The extensive computational results indicated that the second
method has a better performance in terms of robustness and stability, especially in large-sized problems.
In other words, the second method is preferable because of the better manufacturer responsiveness to the
customer and the production staff satisfaction enhancement.
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NOMENCLATURE

D Downtimes (a General distribution D ~ G (t) ); the time 1. The exponential distribution rate of generation initial
required to back the machine to the operational mood ] processing time of job j on machine 1

U Uptimes (an exponential distribution with rate 8 ); The time _ The exponential distribution rate of generation initial
between two consecutive machine breakdowns Hj processing time of job j on machine 2

- . . The initial (expected) processing time of job j on the

[ Machine index, 1 =1,2 Pij machine i ©p )P g 105]

j Job index, J 12 c ;I'he expected initial completion time of job j on the machine

r The expected value of repair times after each breakdown ¢ i} The expected real completion time of job j on the machine i

1. INTRODUCTION

environments, is strongly Np-hard [5]. Some effective
heuristics proposed to cope with the problem's

The flow Shop Scheduling Problem (FSSP) covers many
real case studies in practical problems [1]. Some papers
described the applications of the two-machine flow shop
scheduling problem (FSSP) [2—4]. Total completion time
minimizes Work in Process (WIP) costs and the rapid
turnaround of jobs. The two-machine FSSP with the sum
of jobs’ completion time as a primary objective, this
paper's focus, even in deterministic scheduling
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complexity do not seem superior over the other [6].
Besides, the job or machine-related uncertainties that
lead to an interruption in the flow of jobs and result in
unwanted delays are commonly occurring in the
production environment, enhancing the problem's
complexity. Arriving of an unanticipated new job [7], due
date uncertainty [8], breakdown occurrence [9],
uncertainty in job processing times [9, 10], etc are the
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likes of uncertainties and disruptions. In 70% of
uncertainty oriented flow shop scheduling studies in past
decades, the job processing time is uncertain, by 25%, the
disruption is machine failure, and by 10%, both of these
factors consider [11]. Machine failure and uncertain
processing times discuss in this paper. Robust and stable
scheduling is one of the policies in confronting
uncertainty. The sensitivity of a schedule performance to
its objective function is called robustness, but stability
refers to the insensitivity of the start (or completion) time.
Stability is a measure of changes in the sequence of jobs
on a machine to the original. The concept of robustness
is very close to flexibility: the ease of schedule
reparability and the power of converting to new, high
quality scheduling in the face of uncertainties. The
expected realized total completion time has been
implemented as a robustness measure by itself [8]. Here
we take this definition as robustness. A function of the
sum of deviation between each jobs' start/completion
times in the initial and realized schedules are often the
stability measure [8], and the same definition is accepted
here. The value of the expected performance measure
obtained by applying the righting shift policy on the
initial schedule is a realized schedule. Additionally, a
justified schedule with a small deviation from the initial
one in the face of uncertainty and without significant
degradation in the main objective is robust and stable.
Simultaneous consideration of robustness and stability
besides maintaining the schedule feasibility improves its
flexibility against uncertainties.

Dealing with uncertainty-related deviations can be
done with predictive, reactive, or predictive-reactive
(hybrid) strategies [12]. In the predictive strategy, future
uncertainties consider in the initial plan. Reactive or
hybrid approaches are common strategies for dealing
with machine breakdown. In almost all robustness-
focused studies, dealing with machine failure disruption
performs with reactive approaches or in the reactive
phase of hybrid approaches [8]. In reactive strategies
(e.g., rescheduling), especially in large-size problems, it
takes a long time to deal with uncertainty. Predictive
strategies can overcome this by actively preparing for any
future uncertainties [12], so here we adopt a predictive
approach to cope with machine breakdown and
uncertainty of job processing times. The two-machine
Flow Shop Scheduling Problem (FSSP) under
uncertainty of processing time is referenced in many
papers, commonly with makespan as a primary objective
function [13, 14]. C max | is also a primary objective in
most FSSP under machine breakdown disruption studies
[15, 16]. In addition, it has been a primary objective in
the case of simultaneously considering the uncertainty of
processing time and machine breakdown [9, 17].
Therefore, we define the robustness measure based on
another performance measure; i.e., the total completion
times. With a glimpse at the previous attempts in this

realm of research, we can state contributions of this
paper:

e Although various cases of the robust and stable flow
shop-scheduling problem previously raised in studies,
this article discusses a (particular) case of F2 for the first
time.

e Simultaneously considering robustness and stability
to meet the requirements of producers and workers.

o Besides, predictively coping with the uncertainty of
job processing times, dealing with machine breakdowns
is also predictive.

o Proposing a novel robust and stable heuristics to cope
with aforementioned-uncertainty conditions.

e The way of considering the uncertainty, the proposed
solution method, and the primary objective function is
different from the previous more related works.

The remainder of this paper is as follows; the related
literature review is in section 2. In section 3, we define
the problem and propose our solution method. In sections
4, 5 and 6, we presented computational results,
managerial insight, and paper conclusions.

2. LITERATURE REVIEW

This paper presents robust and stable scheduling
approaches for a permutation two-machine flow shop
scheduling problem (PFSSP) under uncertainty with
expected total completion times as a primary objective.
According to the classification of Graham et al. [18], the
problem denotes as F2/prmu/¥’.,Cy;, in the
deterministic version, which is strongly Np-Hard [5]. The
solution methods of F2/prmu/3’_, C,; categorizing
into exact and approximate methods. The high-
performance problem-solving branch and bound
algorithms and Lagrangian methods had proposed for
F2//¥}-1 C,j able to solve up to 50 jobs [19]. Due to the
high complexity of this problem, heuristic methods have
been ever the researchers' focus, for example, MINITI
heuristic [6, 20]. Rossi et al. [21] proposed a simple high-
efficiency FF-RN heuristic method by modifying the
NEH heuristic and compared it with the best simple
heuristics of PFSSP reviewed [21]. In the face of
uncertainty, applying iterative simulation-based methods
or producing robust (and stable) schedules are
conventional approaches to encounter system disruptions
[9]. Ghezail et al. [22] proposed a graphical robust,
proactive approach to deal with uncertainty in the FSSP.
Kasperski et al. [23] propose a predictive regret-based
robust schedule with interval processing times. katrajeni
et al. [24] propose a heuristic to minimize normalized
makespan and instability in a dynamic flow shop under
uncertainty of machine breakdown and job-ready time
variability. Ying [25] applied Iterated Greedy (I1G) and
Simulated Annealing (SA) heuristics to produce a
predictive regret-based robust schedule in a maximum
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completion time two-machine FSSP, whit interval
processing times. Fazayeli et al. [26] applied the Genetic
Algorithm (GA) and SA to produce a robust predictive
schedule in an m-machine PFSP under uncertain repair
time and machine breakdown. Rahmani [9] employed
GA to propose a proactive-reactive robust, and stable
schedule for a two-machine PFSP under uncertain job
processing time and machine failure. Also, she applied
scenarios to show the uncertainty of processing times,
Cmax as an efficiency measure, maximum realized
completion times of jobs as robustness, and the expected
sum of square deviations between the completion time in
actual and initial schedules stability measure. Cui et al.
[16] used a simulation-based method to propose a robust
predictive schedule for two-machine PFSP under
machine breakdown with Cmax as an efficiency measure.
Liao and Fu [7] exploit GA to propose a robust predictive
schedule for an m-machine PFSP with interval
processing times. Abtahi et al. [11] employed a robust
optimization method to produce efficient, robust, and
stable schedules in an m-machine FSSP under
uncertainty. They applied scenarios to show the
uncertainty of processing times, total completion times as
an efficiency measure, total realized tardiness of jobs as
robustness, and the expected sum of square deviations
between the completion time in actual and initial
schedules as a stability measure. Here we adopt total
realize completion times as robustness and the expected
sum of square deviations between the completion time in
actual and initial schedules as a stability measure. We
propose a modified Shifting bottleneck (SB) to produce
robust partial solutions in a two-machine FSSP in the face
of job processing times uncertainty and machine
breakdown. Shifting bottleneck (SB) , a decomposition-
based heuristic, performs well for job shops [27, 28].
Koulamas et al. [29] presented an efficient modified SB
for two-machine PFSSP with total tardiness of jobs as a
primary objective. Mukherjee et al. [30] showed that the
modified SB is suitable in optimally solve a two-machine
PFSSP with the makespan criterion. Elyasi and Salmasi
[31] applied an adjusted SB in stochastic flow shop under
due date uncertainty to minimize the number of tardy
jobs. Allahverdi and Allahverdi [32] proposed a
decomposition-based heuristics for a total completion
time PFSSP with bounded processing time. As can be
seen, few papers focused on

e Producing a robust and stable FSSP with total
completion time as a primary objective.

e Predictively producing a robust and stable FSSP
while considering the uncertainty of job processing time
and machine breakdown simultaneously.

In this paper, we propose a heuristic method to
produce a robust and stable schedule in a stochastic two-
machine FSSP specified case with total completion time
as a primary objective. Then we compare it to an exact
solution method. The former (Our proposed heuristic)

employs modified SB and a theorem of Abtahi et al.
[33], and the latter uses a theorem of Pinedo [34] to
hedge against job processing time uncertainty. We
employ the Right-Shifting (RS) rescheduling method to
obtain a realistic schedule after machine failures
occurrence.

3. PROBLEM DEFINITION AND SOLUTION
METHOD

In this paper, we considered a two-machine FSSP. The
uncertain job processing time and random breakdowns of
machines are the system disruptions. The processing time
of job j on the first and second machines respectively
follow the exponential distribution with rates A; and ;.
The time between two consecutive failures follows an
exponential distribution with the rate of 6 and at most one
failure is expected on a machine in each interval (1/6).
After each breakdown, minimal repairs perform to
restore machines to the operating condition (which does
not affect the machine age and breakdown parameter).
The following assumptions considered:
o Alljobs are available at the beginning of the schedule,
e Machines have availability restriction; i.e., random
machine break down may occur during the processing of
job j on machine i,
e The time between two consecutive breakdowns
follows an exponential distribution. Also, constant repair
times allocate after each failure,
e The rest of the disrupted job will perform after
machine repairing,
e Only non-delay schedules considered,
e The objective function is a minimization of
schedules’ robustness and stability simultaneously.

3.1.Solution Method According to a classification
by Graham et al. [18], a problem of robust and stable two-
machine FSSP under uncertainty of job processing time
and machine breakdowns is represented as follows:

) P, ~ exp(4,),p, ~exp(y,);
brkdwn :U ~ exp(6),D ~ G (t)

Pinedo [34] showed that sorting the jobs in descending
order of (4; —pu;) optimizes the expected total
completion times (i.e., the intended robustness measure)
in a two-machine FSSP particular case (when job
processing times on the first (second) machine pursued
the exponential distribution with the rate 4;(u;)). Here,
we proposed two robust and stable methods, and for each
one, two policies in the face of machine failure; reactive
and predictive. To predictably deal with the machine
failure, the buffer time insertion method, and to
encounter with reactively, the right shift rescheduling
(RSH) is implemented to the affected jobs [13] for details.

a.RM +(1-a)SM
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Two algorithms are proposed in this paper to handle such
a problem:

e The optimal theorem based method (OBM).

e The decomposition-based method (DBM).

Based on a theorem, the OBM considering the
uncertainty of processing times acquires the optimal
robust solution (of Pinedo [34]) according to the
decreasing order of 4; — ;.

The DBM method employs a modified shifting
bottleneck heuristics and one-machine robustness and
stability optimization theorem [33]; shifting bottleneck
(SB) heuristics [5] decomposes a problem into sub-
problems and solve each sub-problem optimally [25]
using the shortest expected processing time (SEPT) first
rule.

Theorem. SEPT rule solves
1 p, ~exp(4,);
brkdwn :U ~ exp(d),D ~ G, (t)

optimally [33], where 8 is the rate of machine breakdown
and I is the expected repair time, RM = E }7_; G'is a

a.RM + (1-«).SM

robustness measure, and SM = E| }1:1(Cj - er)z] is a
stability measure. According to the above theorem,
sorting the jobs in a no descending order of processing
times over each machine seems an acceptable idea to give
a robust and stable sequence for the intended uncertain
two-machine FSSP. The steps of the DOM are as follows:
e Decompose the intended two-machine uncertain flow
shop-scheduling problem into two one-machine sub-
problems, with predefined conditions of uncertainty.
e Sequence the jobs according to the SEPT on the first
machine.
e The first job on the first machine (M1) continued its
process on the second machine regardless of the amount
of its expected processing time (on M2).
e To determine the order of the remaining jobs on M2,
do as follows.
o Whenever because of incomplete remaining
(previous) jobs on M2, there is a queue with more than
two jobs on M1, order the jobs queue according to the
shortest expected value of their processing times on M2,
e Otherwise, the jobs keep their sequence on ML1.
Figure 1 shows the flow chart of DBM. In the next
section, we compared the proposed methods after the
implementation of reactive as well as predictive policy.
The job sequence on the two machines are the same in
OBM; however, during the execution of DBM, the job
sequence on M1 may not keep.

4. COMPUTATIONAL RESULTS

4. 1. Data Generation The job processing times
on the first and second machines are uncertain and
respectively follow the exponential distribution with the

Update job processing
times

Determine the Schedule on
M1 based on SEPT

Schedule the first job on
M2 as the first job on M1

Is there any
queue on M1?

YES Keep the job
sequence on
Update the jobs in a queue M1 and
according to shortest Schedule the
expected value of their first job ina
processina times on M2 queue on M2
Schedule the first job of the
updated queue on M2
YES
Is there any
unscheduled
iob on M2?

| STOP |

Figure 1. the flow chart of DBM

rate of 4; and u;, whered; and u; are independently
generated from u [0.1,1]. We select the number of jobs

from set j={3510,30,50,60,100}. Then 100 instances

generate for each job number. Hence, we have 700
problems. For each test problem, we chose the rate of
machine breakdown from a set ¢ = {1/50,1/60,1/80} ; a

higher value of ¢ represents a higher probability of
machine breakdown disruption.

Like Nouri et al. [35], the repair times duration
follows an exponential distribution based on the
meantime to repair value (MTTR) at two-level. The repair
times’ duration calculates via r =expmd (MTTR), and

the MTTR based on the machine busy time (MB); for low
level, MTTR, [0.01MB,0.05MB ], and for high level,

MTTR, €[0.05MB,0.1MB]. Ultimately we have

combination of 4200 problems. The methods compare to
reach a comprehensive conclusion as follows:

1. Without considering machine breakdown,

2. Applying the reactive policy after failure,

3. Dealing with breakdown disruption predictively.

4. 2. Two Comparative Methods without
Considering Machine Breakdown Here, we
examine the performance (objective function) of the two
methods provide the managerial results for (the problem
in question without assuming machine breakdown)
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F2/p, ~exp(4,).p,, ~exp(u,)/E (Z';:lcz'j ) The
problem coded in MATLAB R2013b, and the results have
reported for different problems' sizes. Solving time is
negligible and has not been brought. In Figures 2 to 4,
AEC, AECO, and RD respectively represent the Average
Expected Completion time of the DBM to OBM and the
relative deviation of the objective function of DBM to
OBM without considering machine breakdowns. Figures
2 and 3 report the AEC, AECO, and RD for the small size
problems. It seems that DBM has a proper performance
for small-size (3-30 jobs) problems (given that OBM
offers the optimal solution for

F2/p, ~exp(4).p, ~exp(,uj)/E( ?AC;))- Although the

performance of DBM as a heuristic method is still
acceptable (see Figures 4 and 5), for the medium to large-
size (50-100 jobs) problems, OBM thoroughly
outperforms DBM.

4. 3. Two Comparative Methods Based on

Applying Reactive Policy Here, we examine two

proposed methods for (the problem in question)
P, ~exp(4 ). p, ~ exp(u);

F2 aRM + (1—a).SM
brkdwn :U ~ exp(8),D ~ G (t)

applying the reactive policy after machine breakdown.

The problem coded in MATLAB R2013b, and outputs has

been reported different problems' sizes in Table 1.

RR_DBM, R_OBM, SR_DBM, SR_OBM, Z RDBM,

AECO(t)
70k AN AEC(t)

45

400

lb 2’0 3b 4b Sb Gb 7’0 Bb 9r0 100
Number of iterations

Figure 2. The comparison the expected completion time for

two methods without considering machine breakdown

(small-size problem)

00
0.0
0.04-

9 0.03F
0.02-

0.011-

L L L
G0 10 20 30

. .
40 50 60 70 80 90 100
Number of iterations

Figure 3. The related deviation between two methods
without considering machine breakdown (small-size
problem)

a.6

AECO(t)
a4 . N e AEC®H)

a2k

al

~ 3.8

3.6

3.4

3.2

3

2.8
o

10 20 30 40 50 60 70 80 90 100
NO. Iteration

Figure 4. Comparing the two methods” expected completion
time without considering machine breakdown (medium to
large-size problems)

0.25-

RD

0.2

0.15(

0 10 1b Zb Sb Ab Sb Gb 7b Bb Qb 100
Number of iterations

Figure 5. The related deviation between two methods

without considering machine breakdown (medium to large-

size problems)

Z ROBM, n, and TIME, respectively represent the
robustness of DBM and OBM, the stability of DBM and
OBM, the objective function value of DBM and OBM, the
number of jobs, and the problem-solving time by
applying reactive policy after machine breakdown.
Figures 6 to 10 illustrate the contents of Table 1.
According to Figures 6 to 10, in all cases of the small-
size problem (n<=10), regardless of the values of TETA
and MTTR; there is no significant difference between the
two proposed methods’ performance. Nevertheless, in
medium to large-size problems (n>=30), OBM
outperforms DBM by applying reactive policy after
machine breakdown. These results had obtained by
considering the same coefficients for robustness and
stability (a = (1-a) =0.5).

4. 4. Two Comparative Methods’ Based on
Applying Predictive Policy Here, we examine
the two proposed methods for solving (the problem in

p, ~exp(4 ). p

1j

question) F2

brkdwn :U ~ exp(6),D ~ G (t)
by applying the predictive policy to encounter the
machine breakdown. The problem coded in MATLAB
R2013b, and the results were reported for different
problems' sizes in Table 2 and Figure 11. RP_DBM,
RP_OBM, SP_DBM, SP_OBM, Z_PDBM, ZP_OBM, n,
and TIME, respectively represent the robustness of DBM

~exp(u,);

2j

a.RM + (1-a)SM
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TABLE 1. Robustness, stability, and the objective function of the two methods by applying the reactive policy for different problem-

parameters

No UTETA MTTR n RR_DBM RR_OBM SR_DBM SR_OBM Z_RDBM Z_ROBM T
1 80 low 3 0.01 0.05 0.05 0.02 0.03 0.036 1.58
2 80 low 5 0.3 0.23 0.26 0.1 0.28 0.16 1.8
3 80 low 10 0.27 0.52 0.47 0.49 0.36 0.5 6.48
4 80 low 30 21.7 1.8 6.7 5.6 14.2 3.7 99
5 80 low 50 237 35 43 23.8 136 7.52 308
6 80 low 60 335 5 63 77 189 14.5 648
7 80 low 100 5858.3 15.3 226.7 79 3042.5 47 2798
8 60 low 3 0.018 0.001 0.02 0.001 0.01 0.009 27
9 60 low 5 0.05 0.33 0.18 0.12 0.11 0.22 11
10 60 low 10 0.82 0.32 0.67 0.19 0.75 0.26 11
11 60 low 30 23 4 7.7 8.3 155 6 202
12 60 low 50 574 4 44 15 310 10 608
13 60 low 60 1733 4 73 12 903 9 380
14 60 low 100 4279 15 223 119 1251 68 3187
15 50 low 3 0.02 0.1 0.08 0.04 0.05 0.08 1.38
16 50 low 5 0.49 0.18 0.23 0.07 0.36 0.12 1.94
17 50 low 10 0.62 0.54 0.72 0.46 0.67 0.5 5.43
18 50 low 30 18 2 75 3.4 12.8 2.8 51.3
19 50 low 50 475 4 45 13 260 9 213.2
20 50 low 60 1581 7.5 81 50 831 29 363
21 50 low 100 4013 13 245 93 2128 54 1567
22 80 high 3 0.07 0.17 0.11 0.17 0.09 0.17 14
23 80 high 5 0.43 0.4 0.4 0.41 0.42 0.41 1.8
24 80 high 10 3 1.08 1.56 1.48 2.28 1.28 6.3
25 80 high 30 147 5 23 17 85.3 11.16 72.3
26 80 high 50 425 46 329 8 186 27 294
27 80 high 60 2663 27 125 343 1394 185 455
28 80 high 100 12388 94.5 418 2055 6403 1075 2049
29 60 high 3 021 021 0.17 0.24 0.19 0.23 141
30 60 high 5 1.03 0.42 0.46 0.50 0.75 0.46 1.62
31 60 high 10 1.18 1.9 11 2.70 15 1.9 4.6
32 60 high 30 166.9 6.6 25.7 42.8 96.3 6.6 70.4
33 60 high 50 378.7 7.8 50.7 58.5 219.2 33.2 313.7
34 60 high 60 1863.8 16.2 2125 113.4 988.6 1143 511.6
35 60 high 100 11129.2 40.65 402 543 5765.7 291.8 2947
36 50 high 3 0.09 0.16 0.13 0.08 0.11 0.12 15
37 50 high 5 0.38 0.39 0.35 0.35 0.367 0.37 211
38 50 high 10 5.46 1.09 1.9 15 3.7 13 5.27
39 50 high 30 103.6 12.27 17.1 12.27 60.36 8.2 53.98
40 50 high 50 1384.3 19.8 97.6 170.3 740.99 95 250
41 50 high 60 2708.8 14.9 146.65 151.99 1427.7 83.47 4449
42 50 high 100 29.6 6328 441.2 316.9 3384.7 173.2 3017
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Figure 6. Comparing the objective function of the two
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Figure 9. Comparing the objective function of the two
methods by applying the reactive policy, low expected
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Figure 10. Comparing the objective function of the two
methods by applying the reactive policy, medium expected
failure, and high repair time

and OBM. The stability of DBM and OBM, the objective
function value of the DBM and OBM, the humber of jobs
and the problem-solving time incorporated by applying
predictive policy to encounter with machine breakdown.
Figure 11 illustrates the contents of Table 2. According
to Figure 11 and Table 2, DBM is preferred to OBM in
all cases regardless of the values of TETA, and MTTR,
especially when the number of jobs increases. These
results were obtained by considering the same
coefficients for robustness and stability (« = (1- a) = 0.5).
In the sensitivity analysis section, we will analyze the
effect of different values of « (robustness coefficient) on
the performance measure of the two methods.

4. 4. Sensitivity Analysis This section provides
additional tests on the methods’ parameters to gauge their
effects on the objective functions’ values.

4. 4. 1. Testing on the Rate of Machine Breakdown
and Mean Time to Repair According to Tables
3 to 8 and Figures 12 to 14, regardless of the number of
jobs, the rate of a machine breakdown and the meantime
to repair, DBM outperforms OBM. Also, as expected, the
higher the failure rate (TETA) and the meantime to repair
(MTTR), the worse the value of the robustness, stability,
and two methods’ objective functions.

4. 4. 2. Testing on the Stability and Robustness
Coefficients In this section, different values of the
robustness coefficients (« ) had applied to achieve both
methods' objective values. The results depicted for the
low level of MTTR and € =0.0125 in Figures 15 to 18.
The effects of the varying coefficients of the robustness
on the two methods’ objective functions by applying the
predictive policy showed in Table 9. According to Table
9 and Figure 17, OBM outperforms DBM when «>07,
especially for many jobs. For values less than 0.7, DBM
is superior to the OBM. In comparing two methods by
applying the reactive policy, the effect of the robustness
coefficient ignores. In this case, OBM is always almost
outperformed DBM.
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TABLE 2. Robustness, stability, and two methods’ objective function by applying the predictive policy for different problem
parameters

No UTETA MTTR n RP_DBM RP_OBM SP_DBM SP_OBM ZP_DBM ZP_OBM T
1 80 low 3 0.01 0.069 0.067 0.015 0.039 0.042 1.58
2 80 low 5 0.27 0.2 0.27 0.07 0.27 0.13 1.8
3 80 low 10 0.26 0.95 0.73 0.32 0.5 0.48 6.48
4 80 low 30 16.6 16.6 9.5 23.7 13 20 99
5 80 low 50 221.25 85.23 44 291.7 133 188.5 308
6 80 low 60 524 164 73 1313 299 739 648
7 80 low 100 6637 667 366 9029 3501 4848 2798
8 60 low 3 0.002 0.05 0.05 0.002 0.25 0.25 27
9 60 low 5 0.04 0.26 0.25 0.08 0.17 0.15 11
10 60 low 10 0.54 0.36 0.55 0.13 0.54 0.25 11
11 60 low 30 19.5 28 13 64 16 46 202
12 60 low 50 552 134 68 936 309 535 608
13 60 low 60 1514 213 110 2086 812 1149 380
14 60 low 100 14350 1018 529 22181 7640 11600 3187
15 50 low 3 0.02 0.1 0.1 0.03 0.06 0.07 1.38
16 50 low 5 0.5 0.2 0.3 0.04 0.4 0.1 1.94
17 50 low 10 0.4 11 0.9 0.4 0.65 0.77 5.43
18 50 low 30 21 26 12.5 52 17 39 513
19 50 low 50 588 146 73.5 972 331 559 213.2
20 50 low 60 2280 265 149 1361 1214 1713 363
21 50 low 100 1241 20487 608 41905 10548 21573 1567
22 80 high 3 0.11 0.2 0.19 0.14 0.15 0.17 14
23 80 high 5 0.35 0.36 041 0.29 0.38 0.33 1.8
24 80 high 10 2.8 1.28 1.8 1.01 2.3 11 6.3
25 80 high 30 74.8 29 19.9 96.5 47.4 49.25 72.3
26 80 high 50 490 167 76 1399.8 283 783 294
27 80 high 60 4458 384 208.8 5710 23335 3047 455
28 80 high 100 30377.5 1569 705 61743 15541 31656 2049
29 60 high 3 0.16 021 0.2 0.18 0.18 0.2 14
30 60 high 5 0.91 0.38 0.51 0.29 0.71 0.34 1.62
31 60 high 10 2 1.9 1.8 1.9 1.9 1.9 4.6
32 60 high 30 159.6 54.2 28.1 2445 93.8 149.4 70.4
33 60 high 50 973.7 202.1 96.1 2032.4 535 1117.3 313.7
34 60 high 60 2248.8 416 167.2 7344.1 1208 3880 511.6
35 60 high 100 39551 1658 815 76047 20183 38852 2948
36 50 high 3 0.06 0.15 0.14 0.05 0.1 0.1 15
37 50 high 5 0.26 0.38 0.37 0.22 0.32 0.30 211
38 50 high 10 8.6 2.16 2.46 2 55 2.08 5.27
39 50 high 30 201 58.87 33.97 312.85 117.5 185.86 53.98
40 50 high 50 4492.4 176.9 5718.1 95.01 2334.68 3029.5 250
41 50 high 60 6660 523.8 264.3 12592 3462.3 6558 4449
42 50 high 100 61755.5 2149.5 1119.6 110545.6 31437.6 56347.5 3017
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Figure 11. Comparison of two methods’ objective function
by applying the predictive policy, low expected failure, and
short repair time

TABLE 3. Robustness, stability, and the objective function of
two methods by applying the predictive policy for n=100, short
MTTR, and different values of TETA

ZP_ ZP_ SP_ SP_. RP_ RP_
OBM DBM OBM DBM OBM DBM

n TETA

100 0.0125 4443 2374 8202 401 684 4293
MTTR  0.016 11600 7640 22181 529 1018 14350
0.02MB  0.02 21573 10548 41905 608 20487 1241

TABLE 4. Robustness, stability, and the objective function of
two methods by applying the predictive policy for n=100, high
MTTR, and different values of TETA

TABLE 7. Robustness, stability, and the objective function of
the two methods applying the predictive policy for n=30, low
MTTR, and different values of TETA

ZP_  ZP_ SP_ SP_ RP_ RP_
OBM DBM OBM DBM OBM DBM

100 0.0125 30 21 31 127 217 29
MTTR  0.016 46 16 64 13 28 19.5
0.02mB  0.02 39 17 52 125 26 21

n TETA

TABLE 8. Robustness, stability, and the objective function of
the two methods by applying the predictive policy for n=30,
high MTTR, and different values of TETA

ZP_  ZP_  SP_ SP_.  RP_ RP_

n TETA OoBM DBM OBM DBM OBM DBM

100 0.0125 4925 474 965 199 29 74.8
MTTR 0016 1494 938 2445 281 542 159.6
0.05MB 0.02 1859 1175 3128 33.97 5887 201

ZP_ ZP_ SP_ SP_. RP_ RP_

n TETA OoBM DBM OBM DBM OBM DBM

100 0.0125 31656 15541 61743 705 1569 30373
MTTR 0.016 38852 20183 76047 815 1658 39551
0.05MB  0.02 56347 31437 110545 1119 2149 61755

TABLE 5. Robustness, stability, and the objective function for
the two methods by applying the predictive policy for n=50, low
MTTR, and different values of TETA

ZP_ ZP_ SP_ SP_ RP_ RP_

n TETA OoBM DBM OBM DBM OBM DBM

50 0.0125 359 191 300 82 57 662
MTTR  0.016 535 309 936 68 134 552
0.02mMB  0.02 559 331 972 735 146 588

TABLE 6. Robustness, stability, and the objective function of
the two methods by applying the predictive policy for n=50,
high MTTR, and different values of TETA

ZP_  ZP_  SP_ SP_  RP_ RP_

n TETA OoBM DBM OBM DBM OBM DBM

50 0.0125 783 283 1399 76 167 490
MTTR 0.016 1117 535 2032 96 202 973
0.05sMB 0.02 3029 2334 95 571 177 4492

25000 1=100,0.02ME, Predic tive

30000 =i 7P 0B ~ -
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Figure 12. Comparison of two methods’ objective function
by applying the predictive policy for n=100, high MTTR,
and different values of TETA
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Figure 13. Comparison of two methods’ objective function
applying the predictive policy for n=50, high MTTR, and
different values of TETA

5. MANAGERIAL INSIGHT

By increasing the importance of producer satisfaction
level (robustness) to the satisfaction level of the
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production environment (stability), i.e., «>0.7, OBM ALPHA=03
outperforms DBM. In other words, if the production 70 . _
R . . , 6000 PDBM.ALPAF(.3TETAQ.0125 /
system's interior completely aligns with the producer's S0 - _
goals and the producer is not worried about the g FOBMALPAROITETAOOLS /
reaction of the production staff, select OBM, and N 000 /
otherwise DBM. 2000 /
If ©<0.0125, OBM outperforms DBM, i.e., if the 1000 ——
wear of the machines is negligible, and the predictive 0 ——
method has a higher cost than the reactive, select OBM, > . !
and otherwise DBM. Figure 16. Comparison of two methods’ objective function
by applying the predictive policy, ALPHA=0.3, low level of
MTTR, TETA
1=30,0.02MB Predictive
70
60 -_— T — . ALPHA=(7
50 - 5000
PDEM ALPAHO TTETAQ.0125
a0 ZP_OBM 4000 e nas
N e+ POEM ALPAHD. 7TETA0.0123
30 ——ss . ZP_DBM
3000 ', ’
20 [
o 2000 4
0 1000 7
00125 oole 0.0z 0 o — —
TETA 5 6 7
Figure 14. Comparison of two methods’ objective function Mo
by applying the predictive policy for n=30, low MTTR, and Figure 17. Comparison of two methods’ objective function
different values of TETA by applying the predictive policy, ALPHA=0.7, low level of
MTTR, TETA
ALPHA=D 1 ALPHA=09
10000 7000
2000 = ' POBMALPAHO0ITETA0.0125 6000 FDBM ALPAHO.STETAC.0125
PDBM.ALPAHO.1TETAD.0125 =000 —  POBMALPAHOSTETAQO123
g 6000 pu , 4000
4000 / 3000
2000
2000 /7 —_
0 p— — - IDDE T — — -
5 5 7 5 [ 7
No. Mo
Figure 15. Comparison of two methods’ objective function Figure 18. Comparison of two methods’ objective function
by applying the predictive policy for ALPHA=0.1, low level by applying the predictive policy, ALPHA=0.9, low level of
of MTTR, TETA MTTR, TETA

TABLE 9. Comparison of two methods’ objective function applying the predictive policy for different values of the robustness
coefficient

a 0.1 0.1 03 03 07 07 09 09
No Z_DBM ZP_OBM Z_DBM ZP_OBM Z_DBM ZP_OBM Z_DBM ZP_OBM
1 0.0613 0.0204 0.0499 0.0312 0.0271 0.0528 0.0157 0.064
2 0.27 0.083 0.27 0.109 0.27 0.161 0.27 0.187
3 0.683 0.383 0.589 0.509 0.401 0.761 0.307 0.887
4 10.21 22.99 11.63 2157 14.47 18.73 15.89 17.31
5 61.725 271.05 97.175 229.75 168.07 147.17 2035 105.9
6 118.1 1198.1 208.3 968.3 388.7 508.7 4789 2789
7 993.1 8192.8 2247.3 6520.4 4755.7 3175.6 6009.9 1503
8 0.0452 0.0068 0.0356 0.0164 0.0164 0.0356 0.0068 0.045
9 0.229 0.098 0.187 0.134 0.103 0.206 0.061 0.242
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10 0.549 0.153 0.547 0.199
11 13.65 60.4 14.95 53.2

12 116.4 855.8 213.2 695.4
13 250.4 1898.7 531.2 1524.1
14 19111 20064 4675.3 15832
15 0.092 0.037 0.076 0.051
16 0.32 0.056 0.36 0.088
17 0.85 0.47 0.75 0.61

18 13.35 49.4 15.05 44.2

19 124.95 889.4 227.85 724.2
20 362.1 1251.4 788.3 1032.2
21 671.3 39763 797.9 35480
22 0.182 0.146 0.166 0.158
23 0.404 0.297 0.392 0.311
24 1.9 1.037 2.1 1.091
25 25.39 89.75 36.37 76.25
26 117.4 1276.5 200.2 1029.9
27 633.72 5177.4 1483.5 4112.2
28 3672.2 55726 9606.7 43691
29 0.196 0.183 0.188 0.189
30 0.55 0.299 0.63 0.317
31 1.82 1.9 1.86 1.9

32 41.25 225.47 67.55 187.41
33 183.86 1849.3 359.38 1483.3
34 375.36 6651.2 791.68 5265.6
35 4688.6 68608 12436 53730.
36 0.132 0.06 0.116 0.08

37 0.359 0.236 0.337 0.268
38 3.074 2.016 4.302 2.048
39 50.673 287.45 84.079 236.65
40 5595.5 103.2 5350.4 119.6
41 903.87 11385. 2183.0 8971.5
42 7183.1 99706 19310 78027
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0.543 0.291 0.541 0.337
17.55 38.8 18.85 31.6
406.8 374.6 503.6 214
1092.8 774.9 1373.6 400
10204 7366.9 12968 3134
0.044 0.079 0.028 0.093
0.44 0.152 0.48 0.184
0.55 0.89 0.45 1.03
18.45 33.8 20.15 28.6
433.65 393.8 536.55 228.6
1640.7 593.8 2066.9 374.6
1051.1 26912 1177.7 22629
0.134 0.182 0.118 0.194
0.368 0.339 0.356 0.353
2.5 1.199 2.7 1.253
58.33 49.25 69.31 35.75
365.8 536.84 448.6 290.3
3183.2 1981.8 4033 916.6
21476 19621 2741 7586
0.172 0.201 0.164 0.207
0.79 0.353 0.87 0.371
1.94 1.9 1.98 1.9
120.15 111.29 146.45 73.23
710.42 751.19 885.94 385.13
1624.3 2494.4 2040. 1108.
27930. 23974, 35677 9097
0.084 0.12 0.068 0.14
0.293 0.332 0.271 0.364
6.758 2.112 7.986 2.144
150.8 135.06 184.3 84.3
4860.1 152.33 4615 168.7
4741.3 41443 6020.4 1730.
43565 34668 55692 12989

6. CONCLUSION

In this study, we simultaneously considered the
uncertainty of processing time and machine breakdowns
in a two-machine flow shop scheduling problem. Two
methods were proposed and compared in three situations
to deal with this problem; without considering machine
failure disruption and considering machine breakdown
applying with the reactive and predictive policy. In the
first situation, decomposition-based methods have an
acceptable performance compared with the optimal base
one. In the second status, OBM had a higher performance
than DBM except in small-size problems. In applying the

predictive policy, DBM had a higher performance than
OBM, except in cases where producer satisfaction is
more important than stability in the production
environment. In all considering situations, the problem-
solving time was acceptable and almost close to each
other. Finally, OBM applying with the reactive policy,
due to its lower objective function and its lower cost to
DBM, seems more appropriate to solve the problem.

In this paper, a general approach proposed that can be
used for robustness and stability optimization in an m-
machine flow shop or job shop scheduling problem, with
other measures of robustness and stability, or in the
construction of predictive-reactive methods.
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