Experimental Damage Evaluation of Honeycomb Sandwich with Composite Face Sheets under Impact Load

Document Type : Original Article


School of Mechanical Engineering, SASTRA Deemed to be University, Tamilnadu, India


Aerospace structures are highly vulnerable to impact loads whose damage tolerance, and its resistance vary over the range of impact velocity. Honeycomb sandwich structures are used in aerospace industries where mass efficient and impact resistant structures are needed. However, the structural integrity of these structures is reduced by impact load due to tool drop, runway debris, hailstones and improper handling of the structure. A thorough investigation of the damage behaviour of honeycomb sandwich under low-velocity impact and the post-impact residual strength determination is required to design a crashworthy lightweight structure. This paper presents the experimental evaluation of specific energy absorption using Charpy impact, residual compressive strength by compression after impact and damage evaluation of honeycomb sandwich structures having composite face sheets. Parametric studies on composites and honeycombs are carried out by varying the cell size, cell thickness, core height, impact velocity, thickness and orientation of lamina. Densely packed thick honeycombs provide higher fracture energy. Under transverse compressive loading, the honeycomb core undergoes cell wall buckling, crushing and densification. Load-displacement history under in-plane compression and compression after impact for different impact energies is observed. The present study contributes for the understanding how various parameters affect the characteristics of face sheet indentation and plastic buckling of honeycomb sandwich structures with composite face sheets, thereby providing useful guidelines for its potential applications in impact engineering.


1.     Mekonnen,  B.Y. and  Mamo, Y. J., “Tensile and Flexural Analysis of a Hybrid Bamboo/Jute Fiber-reinforced Composite with Polyester Matrix as a Sustainable Green Material for Wind Turbine Blades”, International Journal of Engineering, Transactions B: Applications,  Vol. 33, No. 2, (2020), 314-319. https://doi.org/10.5829/IJE.2020.33.02B.16
2.     Asyraf, M. R. M.,  Ishak, M. R.,  Sapuan, S. M., Yidris, N., Ilyas, R.A., Rafidah, M. and Razman, M. R., “Potential Application of Green Composites for Cross Arm Component in Transmission Tower: A Brief Review”, International Journal of Polymer Science, (2020), 8878300, https://doi.org/10.1155/2020/8878300.
3.     Asyraf, M. R. M.,  Ishak, M. R.,  Sapuan, S. M., Yidris, N., Ilyas, R.A., Rafidah, M. and Razman, M. R., “Evaluation of Design and Simulation of Creep Test Rig for Full-Scale Crossarm Structure”, International Journal of Polymer Science, (2020), 6980918, https://doi.org/10.1155/2020/6980918.
4.     Nurazzi, N. M., Khalina, A., Sapuan, S. M., Ilyas, R. A., Rafiqah, S. A. and Hanafee, Z. M., “Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites”, Journal of Materials Research and Technology, Vol. 9, No. 2, (2020), 1606-1618. https://doi.org/10.1016/j.jmrt.2019.11.086.
5.     Sapuan, S. M., Aulia, H. S., Ilyas, R. A., Atiqah, A., Dele-Afolabi, T. T., Nurazzi, M. N. and Atikah, M. S. N., “Mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites”, Polymers, Vol. 12, No. 10, (2020), 1-14. https://doi.org/10.3390/polym12102211.
6.     Aisyah, H. A., Paridah, M. T., Sapuan, S. M., Khalina, A., Berkalp, O. B., Lee, S. H. and Ilyas, R. A., “Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panels”, International Journal of Polymer Science, (2019). https://doi.org/10.1155/2019/5258621.
7.     Maraki, M. R., Tagimalek, H., Azargoman, M., Khatami, H. and Mahmoodi, M., “Experimental investigation and statistical modeling of the effective parameters in Charpy impact test on AZ31 magnesium alloy with v-shape groove using Taguchi method”, International Journal of Engineering Transactions C: Aspects, Vol. 33, No. 12, (2020), 2521-2529. https://doi.org/10.5829/ije.2020.33.12c.13.
8.     Lu, S., Zhao, W., Han, P. and Hang, Z., “Mechanical Behavior of Hybrid Connectors for Rapid-Assembling Steel-Concrete Composite Beams”, Civil Engineering Journal, Vol. 5, No. 10, (2019), 2081-2092. https://doi.org/10.28991/cej-2019-03091395.
9.     Kuddus, M. A. and Dey, P. P., “Cost Analysis of RCC, Steel and Composite Multi-Storied Car Parking Subjected to High Wind Exposure in Bangladesh”, Civil Engineering Journal, Vol. 3, No. 2, (2017), 95-104. https://doi.org/10.28991/cej-2017-00000076.
10.   Wani, S. B., “Influence of Bi-directional Fibreglass Grid Reinforcement on Drying Shrinkage and Mechanical Properties of Lightweight Foamed Concrete”, International Journal of Engineering, Transactions A: Basics, Vol. 34, No. 1, (2021), 10-18. https://doi.org/10.5829/ije.2021.34.01a.02.
11.   Rastegarian, S. and Sharifi, A., “An investigation on the correlation of inter-story drift and performance objectives in conventional RC frames”, Emerging Science Journal, Vol. 2, No. 3, (2018), 140-147. https://doi.org/10.28991/esj-2018-01137.
12.   Abbas, J. L. and Allawi, A. A., “Experimental and Numerical Investigations of Composite Concrete-Steel Plate Shear Walls Subjected to Axial Load”, Civil Engineering Journal, Vol. 5, No. 11, (2019), 2402-2422. https://doi.org/10.28991/cej-2019-03091420.
13.   Asyraf, M. R. M., Ishak, M. R., Sapuan, S. M., Yidris, N., Shahroze, R. M., Johari, A. N. and Ilyas, R. A., “Creep test rig for cantilever beam: fundamentals, prospects and present views”, Journal of Mechanical Engineering and Sciences, Vol. 14, No. 2, (2020), 6869-6887. https://doi.org/10.15282/jmes.14.2.2020.26.0538.
14.   Sohel, K. M. A., Richard Liew, J. Y., Alwis, W. A. M. and Paramasivam, V., “Experimental investigation of low-velocity impact characteristics of steel-concrete-steel sandwich beams”, Steel and Composite Structures, Vol. 3, No. 4, (2003), 289-306. https://doi.org/10.1016/S0263-8223(00)00098-2
15.   Cote, F., Deshpande, V. S., Fleck, N. A. and Evans, A. G., “The out-of-plane compressive behaviour of metallic honeycombs”, Materials Science and Engineering A, Vol. 380, No. 1, (2004), 272-280. https://doi.org/10.1016/j.msea.2004.03.051.
16.   Sibeaud, J. M., Thamié, L. and Puillet, C., “Hypervelocity impact on honeycomb target structures: Experiments and modelling”, International Journal of Impact Engineering, Vol. 35, No. 12, (2008), 1799-1807. https://doi.org/10.1016/j.ijimpeng.2008.07.037.
17.   Jankowiak, T., Rusinek, A., Kpenyigba, K. M. and Pesci, R., “Ballistic behaviour of steel sheet subjected to impact and perforation”, Steel and Composite Structures, Vol. 16, No. 6, (2014), 595-609. https://doi.org/10.12989/scs.2014.16.6.595.
18.   Xie, Z., Yan, Q., and Li, X., "Investigation on low-velocity impact on a foam core composite sandwich panel", Steel and Composite Structures, Vol. 17, No. 2, (2014), 159-172. https://doi.org/10.12989/scs.2014.17.2.159.
19.   Zouggar, K., Boukhoulda, F. B., Haddag, B. and Nouari, M., “Numerical and experimental investigations of S-Glass/Polyester composite laminate plate under low energy impact”, Composites Part B: Engineering, Vol. 89, (2016), 169-186. https://doi.org/10.1016/j.compositesb.2015.11.021.
20.   Zhang, D., Fei, Q. and Zhang, P., “Drop-weight impact behaviour of honeycomb sandwich panels under a spherical impactor”, Composite Structures, Vol. 168, (2017), 633-645. https://doi.org/10.1016/j.compstruct.2017.02.053.
21.   Elias, A., Laurin, F., Kaminski, M. and Gornet, L., “Experimental and numerical investigations of low energy/velocity impact damage generated in 3D woven composite with polymer matrix”, Composite Structures, Vol. 159, (2017), 228-239. https://doi.org/10.1016/j.compstruct.2016.09.077.
22.   Schroder, S., Reinhardt, B., Brauner, C., Gebauer, I. and Buchwald, R., “Development of a Marslander with crushable shock absorber by virtual and experimental testing”’ Acta Astronautica, Vol. 134, (2017), 65-74. https://doi.org/10.1016/j.actaastro.2017.01.023.
23.   Mars, J., Chebbi, E., Wali, M. and Dammak, F., "Numerical and experimental investigations of low-velocity impact on glass fiber-reinforced polyamide” Composites Part B: Engineering, Vol. 146, (2018), 116-123. https://doi.org/10.1016/j.compositesb.2018.04.012.
24.   Palomba, G., Epasto, G., Crupi, V. and Guglielmino, E., “Single and double-layer honeycomb sandwich panels under impact loading”, International Journal of Impact Engineering, Vol. 121, (2018), 77-90. https://doi.org/10.1016/j.ijimpeng.2018.07.013.
25.   Sun, G., Chen, D., Wang, H., Hazell, P. J. and Li, Q., “High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations”, International Journal of Impact Engineering, Vol. 122, (2018), 119-136. https://doi.org/10.1016/j.ijimpeng.2018.08.007.
26.   Xie, W. H., Meng, S. H., Ding, L., Jin, H., Du, S. Y., Han, G. K. and Chi, R. Q., “High-temperature high-velocity impact on honeycomb sandwich panels”, Composites Part B: Engineering, Vol. 138, (2018), 1-11. https://doi.org/10.1016/j.compositesb.2017.06.022.
27.   Mertani, B. M. B., Keskes, B. and Tarfaoui, M., “Experimental Analysis of the Crushing of Honeycomb Cores Under Compression”, Journal of Materials Engineering and Performance, Vol. 28, No. 3, (2019), 1628-1638. https://doi.org/10.1007/s11665-018-3852-2.
28.   Babaei, H., "Prediction of deformation of circular plates subjected to impulsive loading using gmdh-type neural network", International Journal of Engineering-Transactions A: Basics, Vol. 27, No. 10, (2014), 1635. https://doi.org/10.5829/idosi.ije.2014.27.10a.18.