Introducing an Enhanced Friction Model for Developing Inertia Welding Simulation: A Computational Solid Mechanics Approach

Document Type : Original Article

Authors

1 Institute of Materials Joining, Shandong University, Jingshi Road, Jinan, China

2 Department of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi PETRONAS (UTP), Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia

3 enter of Advance Manufacturing and Material Processing (AMMP), Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Malaysia

Abstract

Friction welding is a solid-state welding process that generates heat through mechanical friction between workpieces in relative motion to one another, with the addition of a lateral force called "upset" to plastically displace and fuse the materials. One of the key problems during modeling solid-state welding processes is the implementation of the friction model. Coulomb friction model was proposed by researchers for computational solid mechanics (CSMs) modeling of the process, however this law is based on the sliding motion. Norton friction model is also proposed by others, while simplifications and limitations are caused in coincidence with reality. In this paper, Norton friction model is modified to be employed in a computational solid mechanics model of inertia welding. A continuous remeshing technique is used to avoid the mesh distortion problem. Consequently, successful prediction of the temperature distribution, thermal history, equivalent plastic deformation, axial shortening and stress distribution is made. The comparisons between the results of this study and the literature showed that implementing the proposed methodology leads to achieving high accuracy results.

Keywords


1.     Buffa, G., Fratini, L., Impero, F., Masnata, A., Scherillo, F. and Squillace, A., "Surface and mechanical characterization of stationary shoulder friction stir welded lap joints: Experimental and numerical approach", International Journal of Material Forming,  Vol., (2020), 1-12. https://doi.org/10.1007/s12289-020-01574-9
2.     Sun, Z., Wu, C. and Kumar, S., "Determination of heat generation by correlating the interfacial friction stress with temperature in friction stir welding", Journal of Manufacturing Processes,  Vol. 31, (2018), 801-811. https://doi.org/10.1016/j.jmapro.2018.01.010
3.     Meyghani, B., Awang, M.B., Emamian, S.S., Mohd Nor, M.K.B. and Pedapati, S.R., "A comparison of different finite element methods in the thermal analysis of friction stir welding (fsw)", Metals,  Vol. 7, No. 10, (2017), 450. https://doi.org/10.3390/met7100450
4.     Meyghani, B. and Wu, C., "Progress in thermomechanical analysis of friction stir welding", Chinese Journal of Mechanical Engineering,  Vol. 33, No. 1, (2020), 12. https://doi.org/10.1186/s10033-020-0434-7
5.     Miles, M., Nelson, T., Gunter, C., Liu, F., Fourment, L. and Mathis, T., "Predicting recrystallized grain size in friction stir processed 304l stainless steel", Journal of Materials Science & Technology,  Vol. 35, No. 4, (2019), 491-498. https://doi.org/10.1016/j.jmst.2018.10.021
6.     Meyghani, B., Awang, M.B., Momeni, M. and Rynkovskaya, M., "Development of a finite element model for thermal analysis of friction stir welding (fsw)", in IOP Conference Series: Materials Science and Engineering, IOP Publishing. Vol. 495, (2019), 012101. Doi:10.1088/1757-899X/495/1/012101
7.     Meyghani, B., Awang, M. and Emamian, S., "A mathematical formulation for calculating temperature dependent friction coefficient values: Application in friction stir welding (fsw)", in Defect and Diffusion Forum, Trans Tech Publ. Vol. 379, (2017), 73-82. https://doi.org/10.4028/www.scientific.net/DDF.379.73
8.     Meyghani, B., Awang, M.B., Poshteh, R.G.M., Momeni, M., Kakooei, S. and Hamdi, Z., "The effect of friction coefficient in thermal analysis of friction stir welding (FSW)", in IOP Conference Series: Materials Science and Engineering, IOP Publishing. Vol. 495, (2019), 012102. Doi:10.1088/1757-899X/495/1/012102
9.     Dialami, N., Cervera, M., Chiumenti, M. and de Saracibar, C.A., "Local–global strategy for the prediction of residual stresses in fsw processes", The International Journal of Advanced Manufacturing Technology,  Vol. 88, No. 9, (2017), 3099-3111. https://doi.org/10.1007/s00170-016-9016-3
10.   JI, S.-d., LIU, J.-g., YUE, Y.-m., Zan, L. and Li, F., "3d numerical analysis of material flow behavior and flash formation of 45# steel in continuous drive friction welding", Transactions of Nonferrous Metals Society of China,  Vol. 22, (2012), s528-s533. https://doi.org/10.1016/S1003-6326(12)61756-7
11.   NIMESH, P., "Simulation of inertia friction welding of mild steel and aluminium 6061 using finite element method on abaqus",  (2016).
12.   Meyghani, B., Awang, M. and Wu, C., "Thermal analysis of friction stir welding with a complex curved welding seam (technical note)", International Journal of Engineering, Transactions A: Basics,  Vol. 32, No. 10, (2019), 1480-1484. https://dx.doi.org/10.5829/ije.2019.32.10a.17
13.   Dialami, N., Cervera, M., Chiumenti, M., Segatori, A. and Osikowicz, W., "Experimental validation of an fsw model with an enhanced friction law: Application to a threaded cylindrical pin tool", Metals,  Vol. 7, No. 11, (2017), 491. https://doi.org/10.3390/met7110491
14.   Dialami, N., Cervera, M., Chiumenti, M. and de Saracibar, C.A., "A fast and accurate two-stage strategy to evaluate the effect of the pin tool profile on metal flow, torque and forces in friction stir welding", International Journal of Mechanical Sciences,  Vol. 122, (2017), 215-227. https://doi.org/10.1016/j.ijmecsci.2016.12.016
15.   Moal, A. and Massoni, E., "Finite element simulation of the inertia welding of two similar parts", Engineering Computations,  (1995). https://doi.org/10.1108/02644409510799730
16.   MEYGHANI, B., "Thermomechanical analysis of friction stir welding (fsw) on curved plates by adapting calculated temperature dependent properties", Universiti Teknologi PETRONAS,  (2018),
17.   Meyghani, B. and Awang, M., "A comparison between the flat and the curved friction stir welding (fsw) thermomechanical behaviour", Archives of Computational Methods in Engineering, (2019), 1-14. https://doi.org/10.1007/s11831-019-09319-x
18.   Meyghani, B., Awang, M. and Wu, C., "Finite element modeling of friction stir welding (fsw) on a complex curved plate", Journal of Advanced Joining Processes,  Vol. 1, (2020), 100007. https://doi.org/10.1016/j.jajp.2020.100007
19.   Meyghani, B., Awang, M., Emamian, S. and Akinlabi, E., "A comparison between temperature dependent and constant young's modulus values in investigating the effect of the process parameters on thermal behaviour during friction stir welding: Vergleich zwischen den temperaturabhängigen und konstanten elastizitätsmodulwerten in der untersuchung der prozessparameter auf die wärmewirkung beim rührreibschweißen", Materialwissenschaft und Werkstofftechnik,  Vol. 49, No. 4, (2018), 427-434. https://doi.org/10.1002/mawe.201700255
 
 
 
 
 
 
 
20.   Meyghani, B., Awang, M., Emamian, S. and Khalid, N.M., "Developing a finite element model for thermal analysis of friction stir welding by calculating temperature dependent friction coefficient", in 2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering, Springer. (2017), 107-126. https://doi.org/10.1007/978-981-13-8297-0_64
21.   Meyghani, B., Awang, M., Emamian, S. and Nor, M.K.B.M., Thermal modelling of friction stir welding (FSW) using calculated young’s modulus values, in The advances in joining technology. 2018, Springer.1-13. https://doi.org/10.1007/978-981-10-9041-7_1
22.   Meyghani, B., Awang, M. and Emamian, S., "A comparative study of finite element analysis for friction stir welding application", ARPN Journal of Engineering and Applied Sciences,  Vol. 11, No. 22, (2016), 12984-12989.
23.   Meyghani, B., Awang, M. and Wu, C., "Thermal analysis of friction stir processing (FSP) using arbitrary lagrangian‐eulerian (ALE) and smoothed particle hydrodynamics (SPH) meshing techniques", Materialwissenschaft und Werkstofftechnik,  Vol. 51, No. 5, (2020), 550-557. https://doi.org/10.1002/mawe.201900222
24.   Meyghani, B. and Awang, M., "A novel tool path strategy for modelling complicated perpendicular curved movements", Key Engineering Materials,  Vol. 796, (2019), 164-174. https://doi.org/10.4028/www.scientific.net/KEM.796.164
25.   Meyghani, B. and Awang, M., "Developing a finite element model for thermal analysis of friction stir welding (fsw) using hyperworks", in Advances in Material Sciences and Engineering, Singapore, Springer Singapore., (2020), 619-628. https://doi.org/10.1007/978-981-13-8297-0_64
26.   Wang, K., "Transient temperature distribution in inertia welding of steels", Welding Journal,  Vol. 49, (1970), 419s-426s.
27.   Qin, G., Geng, P., Zhou, J. and Zou, Z., "Modeling of thermo-mechanical coupling in linear friction welding of ni-based superalloy", Materials & Design,  Vol. 172, (2019), 107766. https://doi.org/10.1016/j.matdes.2019.107766
28.   Okeke, S., Harrison, N. and Tong, M., "Thermomechanical modelling for the linear friction welding process of ni-based superalloy and verification", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications,  Vol. 234, No. 5, (2020), 796-815. https://doi.org/10.1177%2F1464420719900780
29.   Mohammed, M., Bennett, C., Shipway, P. and Hyde, T., "Optimization of heat transfer in the finite element process modelling of inertia friction welding of scmv and aermet 100", WIT Transactions on Engineering Sciences,  Vol. 68, (2010), 253-265.
30.   Meyghani, B., Awang, M. and Wu, C., "Thermal analysis of friction stir welding with a complex curved welding seam", International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 10, (2019), 1480-1484. Doi: https://dx.doi.org/10.5829/ije.2019.32.10a.17
31.   Meyghani, B. and Awang, M.B., "Prediction of the temperature distribution during friction stir welding (FSW) with a complex curved welding seam: Application in the automotive industry", MATEC Web Conference,  Vol. 225, (2018), 01001. https://doi.org/10.1051/matecconf/201822501001