Developing a Bi-objective Mathematical Model to Design the Fish Closed-loop Supply Chain

Document Type : Original Article


1 Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Industrial Engineering, University of Tehran

3 Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Puebla, Mexico


In recent years, many industries in developed countries have integrated the important process of reverse logistics into their supply chain for different reasons, including growing environmental concerns. Given fish as perishable food, re-employing unused products and waste in each step of the chain constitute a major concern for the decision-makers. The present study is conducted to maximize responsiveness to customer demand and minimize the cost of the fish closed-loop supply chain (CLSC) by proposing a novel mathematical model. To solve this model, the epsilon-constraint method and Lp-metric were employed. Then, the solution methods were compared with each other based on the performance metrics and a statistical hypothesis. The superior method is ultimately determined using the TOPSIS method. The model application is tested on a case study of the trout CLSC in the north of Iran by performing a sensitivity analysis of demand. This analysis showed the promising results of using the proposed solution method and model.


1.     Akbari-Kasgari, M., Khademi-Zare, H., Fakhrzad, M. B., Hajiaghaei-Keshteli, M., and Honarvar, M., "A Closed-loop Supply Chain Network Design Problem in Copper Industry", International Journal of Engineering - Transaction B: Applications, Vol. 33, No. 10, (2020), 2008–2015. doi:10.5829/ije.2020.33.10a.19
2.     Govindan, K., and Soleimani, H., "A review of reverse logistics and closed-loop supply chains: a Journal of Cleaner Production focus", Journal of Cleaner Production, Vol. 142, (2017), 371–384. doi:10.1016/j.jclepro.2016.03.126
3.     Tavakkoli-Moghaddam, R., Yadegari, M., and Ahmadi, G., "Closed-loop Supply Chain Inventory-location Problem with Spare Parts in a Multi-Modal Repair Condition", International Journal of Engineering - Transaction B: Applications, Vol. 31, No. 2, (2018), 346–356. doi:10.5829/ije.2018.31.02b.20
4.     Cheraghalipour, A., Paydar, M. M., and Hajiaghaei-Keshteli, M., "An Integrated Approach for Collection Center Selection in Reverse Logistic", International Journal of Engineering - Transaction A: Basics, Vol. 30, No. 7, (2017), 1005–1016. doi:10.5829/ije.2017.30.07a.10
5.     Hajiaghaei-Keshteli, M., Abdallah, K. S., and Fathollahi-Fard, A. M., "A Collaborative Stochastic Closed-loop Supply Chain Network Design for Tire Industry", International Journal of Engineering - Transaction A: Basics, Vol. 31, No. 10, (2018), 1715–1722. doi:10.5829/ije.2018.31.10a.14
6.     Govindan, K., "Sustainable consumption and production in the food supply chain: A conceptual framework", International Journal of Production Economics, Vol. 195, (2018), 419–431. doi:10.1016/j.ijpe.2017.03.003
7.     Food and Agriculture Organization of the United Nations. "The State of World Fisheries and Aquaculture 2018–Meeting the sustainable development goals." FAO (2018).
8.     Cinemre, H. A., Ceyhan, V., Bozoğlu, M., Demiryürek, K., and Kılıç, O., "The cost efficiency of trout farms in the Black Sea Region, Turkey", Aquaculture, Vol. 251, Nos. 2–4, (2006), 324–332. doi:10.1016/j.aquaculture.2005.06.016
9.     Shekarian, E., "A review of factors affecting closed-loop supply chain models", Journal of Cleaner Production, Vol. 253, (2020), 119823. doi:10.1016/j.jclepro.2019.119823
10.   Raza, S. A., "A systematic literature review of closed-loop supply chains", Benchmarking: An International Journal, Vol. 27, No. 6, (2020), 1765–1798. doi:10.1108/BIJ-10-2019-0464
11.   Peng, H., Shen, N., Liao, H., Xue, H., and Wang, Q., "Uncertainty factors, methods, and solutions of closed-loop supply chain — A review for current situation and future prospects", Journal of Cleaner Production, Vol. 254, (2020), 120032. doi:10.1016/j.jclepro.2020.120032
12.   Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., Tian, G., and Li, Z., "An adaptive Lagrangian relaxation-based algorithm for a coordinated water supply and wastewater collection network design problem", Information Sciences, Vol. 512, (2020), 1335–1359. doi:10.1016/j.ins.2019.10.062
13.   Fathollahi-Fard, A. M., Ahmadi, A., and Al-e-Hashem, S. M. J. M., "Sustainable closed-loop supply chain network for an integrated water supply and wastewater collection system under uncertainty", Journal of Environmental Management, Vol. 275, (2020), 111277. doi:10.1016/j.jenvman.2020.111277
14.   Tabrizi, S., Ghodsypour, S. H., and Ahmadi, A., "Modelling three-echelon warm-water fish supply chain: A bi-level optimization approach under Nash–Cournot equilibrium", Applied Soft Computing, Vol. 71, (2018), 1035–1053. doi:10.1016/j.asoc.2017.10.009
15.   Ghare, P. M., "A model for exponential decaying inventory." Journal of Industrial Engineering, Vol. 14, (1963), 238–243.
16.   Govindan, K., Jafarian, A., Khodaverdi, R., and Devika, K., "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food", International Journal of Production Economics, Vol. 152, (2014), 9–28. doi:10.1016/j.ijpe.2013.12.028
17.   Chaudhuri, A., Dukovska-Popovska, I., Subramanian, N., Chan, H. K., and Bai, R., "Decision-making in cold chain logistics using data analytics: a literature review", The International Journal of Logistics Management, Vol. 29, No. 3, (2018), 839–861. doi:10.1108/IJLM-03-2017-0059
18.   Lusiantoro, L., Yates, N., Mena, C., and Varga, L., "A refined framework of information sharing in perishable product supply chains", International Journal of Physical Distribution and Logistics Management, Vol. 48, No. 3, (2018), 254–283. doi:10.1108/IJPDLM-08-2017-0250
19.   Mirmajlesi, S. R., and Shafaei, R., "An integrated approach to solve a robust forward/reverse supply chain for short lifetime products", Computers & Industrial Engineering, Vol. 97, (2016), 222–239. doi:10.1016/j.cie.2016.05.015
20.   Abedi, A., and Zhu, W., "An optimisation model for purchase, production and distribution in fish supply chain – a case study", International Journal of Production Research, Vol. 55, No. 12, (2017), 3451–3464. doi:10.1080/00207543.2016.1242800
21.   Soysal, M., Bloemhof-Ruwaard, J. M., Haijema, R., and van der Vorst, J. G. A. J., "Modeling a green inventory routing problem for perishable products with horizontal collaboration", Computers & Operations Research, Vol. 89, (2018), 168–182. doi:10.1016/j.cor.2016.02.003
22.   Cheraghalipour, A., Paydar, M. M., and Hajiaghaei-Keshteli, M., "A bi-objective optimization for citrus closed-loop supply chain using Pareto-based algorithms", Applied Soft Computing, Vol. 69, (2018), 33–59. doi:10.1016/j.asoc.2018.04.022
23.   Masruroh, N. A., Fauziah, H. A., and Sulistyo, S. R., "Integrated production scheduling and distribution allocation for multi-products considering sequence-dependent setups: a practical application", Production Engineering, Vol. 14, No. 2, (2020), 191–206. doi:10.1007/s11740-020-00954-z
24.   Onggo, B. S., Panadero, J., Corlu, C. G., and Juan, A. A., "Agri-food supply chains with stochastic demands: A multi-period inventory routing problem with perishable products", Simulation Modelling Practice and Theory, Vol. 97, (2019), 101970. doi:10.1016/j.simpat.2019.101970
25.   Naderi, B., Govindan, K., and Soleimani, H., "A Benders decomposition approach for a real case supply chain network design with capacity acquisition and transporter planning: wheat distribution network", Annals of Operations Research, Vol. 291, Nos. 1–2, (2020), 685–705. doi:10.1007/s10479-019-03137-x
26.   Motevalli-Taher, F., Paydar, M. M., and Emami, S., "Wheat sustainable supply chain network design with forecasted demand by simulation", Computers and Electronics in Agriculture, Vol. 178, (2020), 105763. doi:10.1016/j.compag.2020.105763
27.   Leng, L., Zhang, C., Zhao, Y., Wang, W., Zhang, J., and Li, G., "Biobjective low-carbon location-routing problem for cold chain logistics: Formulation and heuristic approaches", Journal of Cleaner Production, Vol. 273, (2020), 122801. doi:10.1016/j.jclepro.2020.122801
28.   Chan, F. T. S., Wang, Z. X., Goswami, A., Singhania, A., and Tiwari, M. K., "Multi-objective particle swarm optimisation based integrated production inventory routing planning for efficient perishable food logistics operations", International Journal of Production Research, Vol. 58, No. 17, (2020), 5155–5174. doi:10.1080/00207543.2019.1701209
29.   Siddh, M. M., Soni, G., Jain, R., and Sharma, M. K., "Structural model of perishable food supply chain quality (PFSCQ) to improve sustainable organizational performance", Benchmarking: An International Journal, Vol. 25, No. 7, (2018), 2272–2317. doi:10.1108/BIJ-01-2017-0003
30.   Utomo, D. S., Onggo, B. S., and Eldridge, S., "Applications of agent-based modelling and simulation in the agri-food supply chains", European Journal of Operational Research, Vol. 269, No. 3, (2018), 794–805. doi:10.1016/j.ejor.2017.10.041
31.   Dania, W. A. P., Xing, K., and Amer, Y., "Collaboration behavioural factors for sustainable agri-food supply chains: A systematic review", Journal of Cleaner Production, Vol. 186, (2018), 851–864. doi:10.1016/j.jclepro.2018.03.148
32.   Joshi, A. D., and Gupta, S. M., "Evaluation of design alternatives of End-Of-Life products using internet of things", International Journal of Production Economics, Vol. 208, (2019), 281–293. doi:10.1016/j.ijpe.2018.12.010
33.   Isaloo, F., and Paydar, M. M., "Optimizing a robust bi-objective supply chain network considering environmental aspects: a case study in plastic injection industry", International Journal of Management Science and Engineering Management, Vol. 15, No. 1, (2020), 26–38. doi:10.1080/17509653.2019.1592720
34.   Xu, X., "A note on the subjective and objective integrated approach to determine attribute weights", European Journal of Operational Research, Vol. 156, No. 2, (2004), 530–532. doi:10.1016/S0377-2217(03)00146-2
35.   Chang, P.-C., Hsieh, J.-C., and Lin, S.-G., "The development of gradual-priority weighting approach for the multi-objective flowshop scheduling problem", International Journal of Production Economics, Vol. 79, No. 3, (2002), 171–183. doi:10.1016/S0925-5273(02)00141-X
36.   Mavrotas, G., "Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems", Applied Mathematics and Computation, Vol. 213, No. 2, (2009), 455–465. doi:10.1016/j.amc.2009.03.037
37.   Karimi, N., Zandieh, M., and Karamooz, H. R., "Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach", Expert Systems with Applications, Vol. 37, No. 6, (2010), 4024–4032. doi:10.1016/j.eswa.2009.09.005
38.   Behnamian, J., Fatemi Ghomi, S. M. T., and Zandieh, M., "A multi-phase covering Pareto-optimal front method to multi-objective scheduling in a realistic hybrid flowshop using a hybrid metaheuristic", Expert Systems with Applications, Vol. 36, No. 8, (2009), 11057–11069. doi:10.1016/j.eswa.2009.02.080
39.   Wellek, S., "Testing Statistical Hypotheses of Equivalence and Noninferiority", CRC press, (2010).
40.   Hwang, C.-L., and Yoon, K., "Methods for Multiple Attribute Decision Making", In Multiple Attribute Decision Making, Pp. 58-191. Springer, Berlin, Heidelberg, (1981), 58–191. doi:10.1007/978-3-642-48318-9_3