Improved Strength and Stiffness Characteristics of Cross-laminated Poplar Timber Columns

Document Type : Original Article

Author

Department of Civil Engineering, National Institute of Technology Srinagar, Hazratbal-190006, Jammu and Kashmir, India

Abstract

Timber apart from being a cheap construction material possesses numerous environmental advantages, which makes it one of the highly sought construction material, particularly for moderately loaded residential structures. Timber due to the easy cultivation of timber trees can be made available in abundance. Thus, can serve as an efficient and sustainable building material, provided its structural potential is tapped fully. In this study, various performance improvement techniques have been used for enhancing the axial strength characteristics of a timber specie (Poplar), that is available in abundance, in the northern part of India. Different binding/wrapping techniques have been adopted to utilize Poplar in a laminated form, known as cross-laminated timber (CLT). It has been found that a strength improvement of about 20% can be achieved in CLT short columns by simply bolting the laminates together, while as this improvement can be as high as 32%, provided cold form steel (CFS) sheets are used for strengthening these CLT timber columns. Similarly, in the case of long CLT columns, a strength improvement of 50% is attained when a double cross helix of fibre reinforced polymer (FRP) cloth is adopted for the strengthening purpose. Furthermore, this study is aimed at utilizing small unused, otherwise, waste timber logs/pieces in columns with strength improvement techniques for improved axial strength performance.

Keywords


1.     Bulleit, W. M., Sandberg, L. B., and Woods, G. J., "Steel‐Reinforced Glued Laminated Timber", Journal of Structural Engineering, Vol. 115, No. 2, (1989), 433–444. doi:10.1061/(ASCE)0733-9445(1989)115:2(433)
2.     Plevris, N., and Triantafillou, T. C., "FRP‐Reinforced Wood as Structural Material", Journal of Materials in Civil Engineering, Vol. 4, No. 3, (1992), 300–317. doi:10.1061/(ASCE)0899-1561(1992)4:3(300)
3.     Triantafillou, T. C., and Deskovic, N., "Prestressed FRP Sheets as External Reinforcement of Wood Members", Journal of Structural Engineering, Vol. 118, No. 5, (1992), 1270–1284. doi:10.1061/(ASCE)0733-9445(1992)118:5(1270)
4.     Yusof, A., and Saleh, A. L., "Flexural strengthening of timber beams using glass fibre reinforced polymer", Electronic Journal of Structural Engineering, Vol. 10, (2010), 45–56.
5.     Falk, R. H., and Colling, F., "Laminating Effects in Glued-Laminated Timber Beams", Journal of Structural Engineering, Vol. 121, No. 12, (1995), 1857–1863. doi:10.1061/(ASCE)0733-9445(1995)121:12(1857)
6.     Bhat, J., and Bhat, J., "Flexural Strengthening of Timber Beams using Carbon Fibre Reinforced Polymer Plates", International Journal of Civil Engineering and Technology, Vol. 4, No. 5, (2013), 61–77.
7.     Bhat, J., and Bhat, J., "Ductility of Timber Beams Strengthened using CFRP Pla", International Journal of Civil Engineering and Technology, Vol. 4, No. 5, (2013), 42–54.
8.     Schickhofer, G., and Guggenberger, W., "Elastic analysis of flexibly jointed laminated timber plates", 1st Congress of Croatian Society of Mechanics, (1994).
9.     Fink, G., Kohler, J., and Brandner, R., "Application of European design principles to cross laminated timber", Engineering Structures, Vol. 171, (2018), 934–943. doi:10.1016/j.engstruct.2018.02.081
10.   Brandner, R., "Cross laminated timber (CLT) in compression perpendicular to plane: Testing, properties, design and recommendations for harmonizing design provisions for structural timber products", Engineering Structures, Vol. 171, No. November 2017, (2018), 944–960. doi:10.1016/j.engstruct.2018.02.076
11.   Lukacs, I., Björnfot, A., and Tomasi, R., "Strength and stiffness of cross-laminated timber (CLT) shear walls: State-of-the-art of analytical approaches", Engineering Structures, Vol. 178, (2019), 136–147. doi:10.1016/j.engstruct.2018.05.126
12.   Nolet, V., Casagrande, D., and Doudak, G., "Multipanel CLT shearwalls: an analytical methodology to predict the elastic-plastic behaviour", Engineering Structures, Vol. 179, (2019), 640–654. doi:10.1016/j.engstruct.2018.11.017
13.   Danielsson, H., and Serrano, E., "Cross laminated timber at in-plane beam loading – Prediction of shear stresses in crossing areas", Engineering Structures, Vol. 171, (2018), 921–927. doi:10.1016/j.engstruct.2018.03.018
14.   Schänzlin, J., and Fragiacomo, M., "Analytical derivation of the effective creep coefficients for timber-concrete composite structures", Engineering Structures, Vol. 172, (2018), 432–439. doi:10.1016/j.engstruct.2018.05.056
15.   Stepinac, M., Rajčić, V., and Barbalić, J., "Utjecaj dugotrajnog opterećenja na spregnute sustave drvo-beton", Journal of the Croatian Association of Civil Engineers, Vol. 67, No. 3, (2015). doi:10.14256/JCE.1170.2014
16.   Dias, A. M. P. G., Kuhlmann, U., Kudla, K., Mönch, S., and Dias, A. M. A., "Performance of dowel-type fasteners and notches for hybrid timber structures", Engineering Structures, Vol. 171, (2018), 40–46. doi:10.1016/j.engstruct.2018.05.057
17.   Jockwer, R., and Dietsch, P., "Review of design approaches and test results on brittle failure modes of connections loaded at an angle to the grain", Engineering Structures, Vol. 171, (2018), 362–372. doi:10.1016/j.engstruct.2018.05.061
18.   Sandhaas, C., and Görlacher, R., "Analysis of nail properties for joint design", Engineering Structures, Vol. 173, (2018), 231–240. doi:10.1016/j.engstruct.2018.06.071
19.   Cabrero, J. M., and Yurrita, M., "Performance assessment of existing models to predict brittle failure modes of steel-to-timber connections loaded parallel-to-grain with dowel-type fasteners", Engineering Structures, Vol. 171, (2018), 895–910. doi:10.1016/j.engstruct.2018.03.037
20.   Jockwer, R., Fink, G., and Köhler, J., "Assessment of the failure behaviour and reliability of timber connections with multiple dowel-type fasteners", Engineering Structures, Vol. 172, (2018), 76–84. doi:10.1016/j.engstruct.2018.05.081
21.   Popovski, M., and Gavric, I., "Performance of a 2-Story CLT House Subjected to Lateral Loads", Journal of Structural Engineering, Vol. 142, No. 4, (2016). doi:10.1061/(ASCE)ST.1943-541X.0001315
22.   Kuilen, J. W. G. V. De, Ceccotti, A., Xia, Z., and He, M., "Very Tall Wooden Buildings with Cross Laminated Timber", Procedia Engineering, Vol. 14, (2011), 1621–1628. doi:10.1016/j.proeng.2011.07.204
23.   Gavric, I., Fragiacomo, M., and Ceccotti, A., "Cyclic Behavior of CLT Wall Systems: Experimental Tests and Analytical Prediction Models", Journal of Structural Engineering, Vol. 141, No. 11, (2015), 04015034. doi:10.1061/(ASCE)ST.1943-541X.0001246
24.   Pei, S., van de Lindt, J. W., Popovski, M., Berman, J. W., Dolan, J. D., Ricles, J., Sause, R., Blomgren, H., and Rammer, D. R., "Cross-Laminated Timber for Seismic Regions: Progress and Challenges for Research and Implementation", Journal of Structural Engineering, Vol. 142, No. 4, (2016). doi:10.1061/(ASCE)ST.1943-541X.0001192
25.   Stepinac, M., Šušteršič, I., Gavrić, I., and Rajčić, V., "Seismic Design of Timber Buildings: Highlighted Challenges and Future Trends", Applied Sciences, Vol. 10, No. 4, (2020), 1380. doi:10.3390/app10041380
26.   Najm, H., Secaras, J., and Balaguru, P., "Compression Tests of Circular Timber Column Confined with Carbon Fibers Using Inorganic Matrix", Journal of Materials in Civil Engineering, Vol. 19, No. 2, (2007), 198–204. doi:10.1061/(ASCE)0899-1561(2007)19:2(198)
27.   Zhang, W., Song, X., Gu, X., and Tang, H., "Compressive Behavior of   Longitudinally  Cracked  Timber   Columns   Retrofitted   Using FRP   Sheets",   Journal   of  Structural Engineering, Vol. 138, No.  1,  (2012),  90–98.  doi:10.1061/(ASCE)ST.1943-541X.0000423
28.   Li, L., Yuan, S. L., Dong, J. F., and Wang, Q. Y., "An Experimental Study on the Axial Compressive Behavior of Timber Columns Strengthened by FRP Sheets with Different Wrapping Methods", Applied Mechanics and Materials, Vols 351–352, (2013), 1419–1422. doi:10.4028/www.scientific.net/AMM.351-352.1419
29.   Li, H., Qiu, H., Zhao, Z., and Lu, Y., "Axial compression behaviour of retrofitted long timber columns", Advances in Structural Engineering, Vol. 21, No. 3, (2018), 445–459. doi:10.1177/1369433217719984
30.   Taheri, F., Nagaraj, M., and Khosravi, P., "Buckling response of glue-laminated columns reinforced with fiber-reinforced plastic sheets", Composite Structures, Vol. 88, No. 3, (2009), 481–490. doi:10.1016/j.compstruct.2008.05.013
31.   Davlos, J, F., Salim, H, A., and Munipalle, U., "Glulam-GFRP Composite Beams for Stress-Laminated T-System Timber Bridges", Proceeding of the First International Conference on Advanced Composite Materials in Bridges and Structures. CSCE-CGC, Sherbrooke, Quebec, Canada, (1992), 455–463.
32.   D.A. Tingley, R. J. L., "Reinforced Glulam: Improved Wood Utilization and Product Performance", Technical Forum-Globalization of Wood: Supply, Products, and Markets, Portland, or Forest Products Society, (1993).
33.   Khairun, M., Uyup, A., Hamdan, H., Iskandar, M., and Anwar, U., "Cross-Laminated Timber: production of panel using sesenduk timber species", Timber Technology Bulletin, Vol. 2016, No. 59, (2016), 1–6.
34.   IS 1708: 1986 Reaffirmed 2005, "Technical Forum-Globalization of Wood: Supply, Products, and Markets, Portland, or Forest Products Society", Bureau of Indian Standards, India , 2005.
35.   IS 2062: 2011, "Indian Standard for Hot Rolled Medium and High Tensile Structural Steel Specification (Seventh Revision)", Bureau of Indian Standards, India, 2011.