Cogging Torque Minimization in Transverse Flux Permanent Magnet Generators using Two-step Axial Permanent Magnet Segmentation for Direct Drive Wind Turbine Application

Document Type : Original Article

Authors

1 Electrical machine research group, Niroo Research Institute (NRI), Tehran, Iran.

2 Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran

Abstract

Transverse flux permanent magnet machines (TFPMs) are categorized as synchronous machines that benefit from having high value of torque density and capablity of accommodating high pole numbers. These characteristics make TFPMs suitable candidates for low-speed applications where high torque density value is requred such as direct drive wind turbine application.  Despite the aforementioned advantages, TFPMs suffer from intrinsically high cogging torque value which is an important concern for wind turbine application. This paper focuses on axial PM segmentation technique to minimized cogging torque of TFPM topologies. Concept of the proposed method is discussed using analytical equations and optimum segmentaion angle is formulized. Non-linear magnetic equivalent circuit (MEC) is adopted where the PM segmentation, armature reaction, rotor transition and iron saturation effect are carefully modeled. The results of the MEC simulation are compared with the finite element method (FEM) results in terms of accuracy and computational time. The results from the analysis indicate that the proposed MEC method is almost ten times faster than FEM with reasonable level of precision. Taguchi method is adopted as a fast-response optimization method to improve the generator torque characteristics. The results show that the cogging torque has reduced by 97% with respect to the initial design while the average torque has only dropped by 8% which is an acceptable side effect due to the significant improvement in machine cogging torque.

Keywords


1.     Sang-Yong Jung, Hochang Jung, Sung-Chin Hahn, Hyun-Kyo Jung, and Cheol-Gyun Lee, "Optimal Design of Direct-Driven PM Wind Generator for Maximum Annual Energy Production", IEEE Transactions on Magnetics, Vol. 44, No. 6, (2008), 1062–1065. doi:10.1109/TMAG.2007.916250
2.     McDonald, A., and Bhuiyan, N. A., "On the Optimization of Generators for Offshore Direct Drive Wind Turbines", IEEE Transactions on Energy Conversion, Vol. 32, No. 1, (2017), 348–358. doi:10.1109/TEC.2016.2624219
3.     Ghaheri, A., Mohammadi Ajamloo, A., Torkaman, H., and Afjei, E., "Design, modelling and optimisation of a slot‐less axial flux permanent magnet generator for direct‐drive wind turbine application", IET Electric Power Applications, Vol. 14, No. 8, (2020), 1327–1338. doi:10.1049/iet-epa.2019.0385
4.     Bhuiyan, N. A., and McDonald, A., "Optimization of Offshore Direct Drive Wind Turbine Generators With Consideration of Permanent Magnet Grade and Temperature", IEEE Transactions on Energy Conversion, Vol. 34, No. 2, (2019), 1105–1114. doi:10.1109/TEC.2018.2879442
5.     Nasiri-Zarandi, R., Ghaheri, A., and Abbaszadeh, K., "Thermal Modeling and Analysis of a Novel Transverse Flux HAPM Generator for Small-Scale Wind Turbine Application", IEEE Transactions on Energy Conversion, Vol. 35, No. 1, (2020), 445–453. doi:10.1109/TEC.2019.2936683
6.     Moradi CheshmehBeigi, H., "Design, Optimization and FEM Analysis of a Surface-Mounted Permanent-magnet Brushless DC Motor", International Journal of Engineering, Vol. 31, No. 2, (2018), 339–345. doi:10.5829/ije.2018.31.02b.19
7.     Zahabi, M., Ardeshir, G., and Ale Ahmad, A., "Influence of DC-Link Voltage on Commutation Torque Ripple of Brushless DC Motors with Two-Segment Pulse-width Modulation Control Method", International Journal of Engineering - Transaction B: Applications, Vol. 31, No. 2, (2018), 307–314. doi:10.5829/ije.2018.31.02b.15
8.     Torkaman, H., Ghaheri, A., and Keyhani, A., "Design of Rotor Excited Axial Flux-Switching Permanent Magnet Machine", IEEE Transactions on Energy Conversion, Vol. 33, No. 3, (2018), 1175–1183. doi:10.1109/TEC.2018.2807804
9.     Husain, T., Hasan, I., Sozer, Y., Husain, I., and Muljadi, E., "Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications", IEEE Transactions on Industry Applications, Vol. 54, No. 4, (2018), 3604–3615. doi:10.1109/TIA.2018.2814979
10.   Ajamloo, A. M., Ghaheri, A., and Nasiri-Zarandi, R., "Design and Optimization of a New TFPM Generator with Improved Torque Profile", 2019 International Power System Conference (PSC), IEEE, (2019), 106–112. doi:10.1109/PSC49016.2019.9081559
11.   Ueda, Y., and Takahashi, H., "Transverse-Flux Motor Design With Skewed and Unequally Distributed Armature Cores for Reducing Cogging Torque", IEEE Transactions on Magnetics, Vol. 53, No. 11, (2017), 1–5. doi:10.1109/TMAG.2017.2703087
12.   Wang, Q., Zhao, B., Zhao, H., Li, Y., and Zou, J., "Optimal Design of Tubular Transverse Flux Motors With Low Cogging Forces for Direct Drive Applications", IEEE Transactions on Applied Superconductivity, Vol. 26, No. 7, (2016), 1–5. doi:10.1109/TASC.2016.2600104
13.   Washington, J. G., Atkinson, G. J., and Baker, N. J., "Reduction of Cogging Torque and EMF Harmonics in Modulated Pole Machines", IEEE Transactions on Energy Conversion, Vol. 31, No. 2, (2016), 759–768. doi:10.1109/TEC.2016.2520200
14.   Nasiri-Zarandi, R., Ajamloo, A. M., and Abbaszadeh, K., "Design Optimization of a Transverse Flux Halbach-Array PM Generator for Direct Drive Wind Turbines", IEEE Transactions on Energy Conversion, Vol. 35, No. 3, (2020), 1485–1493. doi:10.1109/TEC.2020.2975259
15.   Nasiri-Zarandi, R., Ghaheri, A., and Abbaszadeh, K., "Cogging Torque Reduction in U-Core TFPM Generator Using Different Halbach-Array Structures", 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), IEEE, (2018), 1153–1158. doi:10.1109/SPEEDAM.2018.8445328
16.   Liu, C., Zhu, J., Wang, Y., Lei, G., and Guo, Y., "Cogging Torque Minimization of SMC PM Transverse Flux Machines Using Shifted and Unequal-Width Stator Teeth", IEEE Transactions on Applied Superconductivity, Vol. 26, No. 4, (2016), 1–4. doi:10.1109/TASC.2016.2543959
17.   Dobzhanskyi, O., Gouws, R., and Amiri, E., "Analysis of PM Transverse-Flux Outer Rotor Machines With Different Configuration", IEEE Transactions on Industry Applications, Vol. 53, No. 5, (2017), 4260–4268. doi:10.1109/TIA.2017.2696901
18.   Gieras, J. F., "Performance Characteristics of a Transverse Flux Generator", IEEE International Conference on Electric Machines and Drives, 2005, IEEE, (2005), 1293–1299. doi:10.1109/IEMDC.2005.195889
19.   Azari, M. N., "Performance Improvement of a Slotted Solid Rotor Induction Motor with High Temperature Superconder Coating", International Journal of Engineering - Transaction B: Applications, Vol. 32, No. 5, (2019), 693–700. doi:10.5829/ije.2019.32.05b.11
20.   Fekri, H., Shamsi-Nejad, M., and Hasheminejad, S., "Performance Analysis of a Novel Three-phase Axial Flux Switching Permanent Magnet Generator with Overlapping Concentrated Winding", International Journal of Engineering - Transaction B: Applications, Vol. 32, No. 2, (2019), 286–295. doi:10.5829/ije.2019.32.02b.14
21.   Ostovic, V., "Dynamics of saturated electric machines", Springer Science & Business Media, (2012).
22.   Nasiri-Zarandi, R., Ajamloo, A. M., and Abbaszadeh, K., "Proposing the Output Equations and 3-D MEC Modeling for U -Core TFPM Generators", 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), IEEE, (2018), 292–297. doi:10.1109/SPEEDAM.2018.8445324
23.   Sudhoff, S.D., "Power magnetic devices: A multi-objective design approach", John Wiley & Sons, (2014).
24.   Mohammadi Ajamloo, A., Ghaheri, A., Shirzad, H., and Afjei, E., "Non‐linear analytical modelling and optimisation of a 12/8 rotor excited flux‐switching machine", IET Electric Power Applications, Vol. 14, No. 9, (2020), 1592–1603. doi:10.1049/iet-epa.2019.0732
25.   Ghorbani, S., and Reaz Kashyzadeh, K., "Taguchi Approach and Response Surface Analysis for Design of a High-performance Single-walled Carbon Nanotube Bundle Interconnects in a Full Adder", International Journal of Engineering - Transaction B: Applications, Vol. 33, No. 8, (2020), 1598–1607. doi:10.5829/ije.2020.33.08b.18
26.   Mohammadi Ajamloo, A., Abbaszadeh, K., and Nasiri-Zarandi, R., "A Novel Transverse Flux Permanent Magnet Generator for Small-Scale Direct Drive Wind Turbine Application: Design and Analysis", Scientia Iranica, (2019). doi:10.24200/sci.2019.53145.3078