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A B S T R A C T  

 

This paper investigates size-dependent vibrations of stepped nanobeams taken into account surface 

elasticity theory. To do this, the nanobeams are modeled as stepped beams and size-dependent 

governing vibration equations are derived considering compatibility conditions in stepped sections. 
Then, an analytical solution is developed to simulate natural frequencies and mode shapes of the 

nanobeam with various surface properties. Also, a backward procedure is proposed to verify the 

obtained results and calculate size-dependent effective surface modulus. The results indicate that 
surface effects and appropriate steps selection have noticeable impact on natural frequencies of non-

uniform nanobeams. Also, the stepped modeling of the nanobeam became more important for longer 

and slender ones. Moreover, despite uniform nanobeams, the mode shapes of the non-uniform 
nanobeams are also extremely dependent on the surface effects. 

doi: 10.5829/ije.2021.34.03c.20 
 

 

NOMENCLATURE 

E  Young’s modulus of the nanobeam Greek Symbols  

sE  Surface Young’s modulus of the nanobeam   Mass density 

effEI  Effective bending rigidity   Strain components 

iL  Length of ith section   Stress components 

pd  Particle diameter (µm) σo Residual normal stress 

w transverse deflection of the nanobeam s  Surface stress components 

 
1. INTRODUCTION1 
 

In the recent years, remarkable developments in science 

and technology have afforded the ability to fabricate 

small size structures with micron to nano dimensions [1-

2]. Among these novel structures, micro/nanobeams 

have recognized as important components of 

micro/nano systems such as micro/nano resonators, 

atomic force microscopes (AFM), etc [3-4]. Therefore, 

development of advanced micro/nano systems requires 

proper prediction of their mechanical behavior. 

Korayem et al. [5] presented dynamic modeling of an 

atomic force beam for micro/nano manipulation in 
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which the beam was modeled as a lumped mass.  

However, lumped mass modeling cannot be approved as 

an accurate model for a continuous beam, especially in 

the nano-scale.  

On the other hand, the capability of classical 

continuum theory to model micro/nano systems is 

strongly doubted through conducting experimental tests 

and molecular simulations. Accordingly, various 

analytical higher-order theories have been established to 

fix the problem. Bakhtiari-Nejad et al. [6] studied size-

dependent free vibrations of piezoelectric nanobeams 

based on the nonlocal elasticity theory. Also, they [7] 

developed a general formulation of linear natural 

frequencies and corresponding quality factors for 

micro/nano composite beams having arbitrary laminated 

layers based on the nonlocal elasticity theory. Beni [8] 
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employed couple stress theory to model and analyze an 

isotropic Euler-Bernoulli nano-beam. Nazemizadeh et 

al. [9] studied size-dependent nonlinear free vibration of 

a pizoelectic-laminated nanobeam considering the 

nonlocal elasticity theory. Also, they [10] investigated 

size effects on the nonlinear dynamic modeling and 

vibration analysis of a nanobeam at higher modes of 

vibration. 

Furthermore, among the higher-order mechanics 

theories, the theory of surface elasticity initiated by 

Gurtin and Murdoch [11] has attracted great interests in 

nanotechnology. Jiang and Yan [12] employed the 

surface elasticity theory for static bending of shear 

deformable nanobeams. They derived the governing 

equation of the nanobeam and analytically solved the 

problem. Farshi et al. [13] presented size effects of 

vibration of the nanobeams taken into account the 

surface elasticity theory. Assadi and Nazemizadeh [14] 

presented size-dependent static bending of a Nanobeam 

based on the surface elasticity theory. They developed 

Euler nanobeam model to derive the differential 

equation and used a theoretical solution for the static 

behavior of the nanobeam. 

According to the literature review, there is a need to 

take into account size-dependent vibration characteristic 

of the surface parameters. So in this paper, an inverse 

procedure is proposed to verify the obtained results and 

calculate size-dependent effective surface modulus of 

the nanobeam. To do this, the nanobeams are modeled 

as stepped beams and size-dependent governing 

vibration equations are derived considering 

compatibility conditions in stepped sections. Then, an 

analytical solution is developed to simulate natural 

frequencies and mode shapes of the nanobeam with 

various surface properties.  

 

 

2. PROBLEM FORMULATION 
 

In this section, the governing equation of the size-

dependent vibration of the nanobeam is presented. 

Figure 1 shows a nanobeam with non-uniform cross 

section and its equivalent stepped beam. For analysis of 

the problem here it is intended to find the generalized 

governing equations in the presence of any type of 

external loadings. For more information, every section  

 
 

 
Figure 1. A non-uniform nanobeam 

of the beam follows this general equation but we have to 

satisfy the relating boundary conditions in each case 

which will be explained in the next section. According 

to the Euler-Bernoulli beam theory, the strain field of a 

beam is given as follows: 

2

2
; 0xx xz

w
z

x
 


= − =


 (1) 

In this relation, w is the transverse deflection of the 

nanobeam. Also, xx  and xz   are the normal and 

tangential strains. Moreover, x and z are the coordinate 

selections across the nanobeams’ length and thickness, 

respectfully. It is to be noted that the origin of z is the 

nanobeams’ neutral axes. The stress field of the 

deflected nanobeams can be given as follows: 
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In this equation σo is the residual normal stress induced 

in nanobeams by surface residual stresses. According to 

generalized Gurtin-Murdoch relation [14], it will be 

obtained for Euler-Bernoulli beam model: 
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Accordingly, the bending moment of the cross section 

will be obtained from the following integral equation: 
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 (4) 

While the effective bending rigidity EIeff is obtained 

from the following relation: 

2 2s

eff

A z

EI Ez dA E z dS= +   
(5) 

In the above equation, the effective bending rigidity is a 

combination of bulk and surface elasticity rigidity. In 

fact, the surface rigidity is originated from the surface 

effects at nano scales.  

On the other hand and according to the self-

equilibrating condition, the integral relations in the right 

hand side of Equation (4) cancel each other and the 

bending moment is obtained as follows: 

2

2eff

w
M EI

x


= −


 (6) 

Finally the governing general differential equation for 

the deflected nanobeams with consideration of surface 

effects as follows: 
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4 2 2 2

4 2 2 2
2 s

eff

w w w w
EI F A b

x x t x
 

   
+ + =

   
 (7) 

where b is the length of the nanobeams’ neutral axis.  

 

 

3. PROBLEM SOLUTION 
 

The general solution of Equation (7) is taken as 

w(x,t)=W(x).sin(ωnt) from simple variable separation 

method. Therefore, the following equation must be 

satisfied for each section of the nanobeams for W(x): 

4 2
2

4 2
2 0s

eff n

W W
EI b A W

x x
  

 
− − =

 
 (8) 

For simplicity of the problem, another form of Equation 

(8) is given in bellow:  

4 2
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(9) 

Next, Equation (9) is separated as two 2nd order 

independent differential equations from which the 

summation of the solutions represents the general 

solution of Equation (9): 
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(10) 

In this equation, 
IW  is the shape function at the first 

section of the beam and 
IIW  is the shape function at the 

second section of the nanobeam. Also, it is seen that ζ2 

is a positive definite parameter but ψ2 is always 

negative. On the other hand, in order to reduce the 

number of unknowns of the problem, the following 

relation governs between these parameters: 

2 2 2

n n  + =  (11) 

From solving Equation (10), the general solution for W 

in the case of free vibration is given by the following 

equation: 

( ) ( )

( ) ( )

1 2

3 4
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+ +
 (12) 

Next, the boundary conditions of Equation (12) must be 

satisfied to valid the eigenvalue problem of free 

vibration for each sets of boundary conditions. Here the 

whole nanobeam is assumed to be simply supported. 

Similar to the buckling analysis, the following matrix 

equation is obtained for the common boundary 

conditions of i-th and (i+1)-th sections: 
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1 1

2 2 2 2 1 2 1 2

3 3 3 3 1 3 1 3

0 1 0 1

0 0

0 ( ) 0 ( )

( ) 0 ( ) 0

sin ; cos

i i i i

n n n n

i i i i i i i i i i

n n n n n n n n n n

i i i i i i i i i i

n n n n n n n n i n i n

i i i i i i i i i i

n n n n n n n n i n i n

i i i i

n n i n n

f g h l

g f l h

f g h l

g f l h

f L g L

     

       

       

 

+ +

+ +

+ +

 − −
 

− − − 
 − − −
 
− −  

= = ( ) ( ) ( )
1

; sinh ; cosh ;

i

effi i i i

i n n i n n i i i

eff

EI
h L l L

EI
  

+

= = =

 
(13) 

On the other hand, the boundary conditions for the 

left side of the first section and the right side of the last 

section make the problem to follow the given relations 

in Equation (14): 
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Finally, all the matrixes of Equation (13) for i = 

2…N together with Equation (14) must be merged to 

give the general matrix equation of a step-wised 

nanobeam with N sections. It is seen that if all the 

material and geometric parameters are given, then the 

only unknown parameter in the coefficient matrix of 

Equation (13) is the natural frequency ωn.  

 

 

4. SIMULATION RESULTS 

 

In this section, a wide range of vibration simulations are 

presented for aluminum and silicon-100 nanobeams 

with the following material parameters (see Table 1) 

[14]. 

To verify the proposed method, in Figure 2, the 

obtained results for vibration analysis of a uniform 

nanobeam are compared with experiment results 

presented by He and Lilley [15]. 

From this figure it is observed that, satisfactory 

agreement is achieved between the results of this work 

and those of experimental investigations of other 

references. 

For other simulations, the problem is solved once for 

nanobeams with surface effects, then for nanobeams 

without surface effects and the results are 

comprehensively compared. For this purpose the 

 

 
TABLE 1. Material properties of the nanobeam  

Material E(Gpa) υ Es(N/m)  τs(N/m) 

Al 68.50 0.35 6.090    0.910 

Si [100] 130.0 0.24 -11.50   -0.505 
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Figure 2. Comparison of effective Young’s modulus between 

the present work and experiment results given by He and 

Lilley [15] 

 

 

parameter of NNF (normalized natural frequency) is 

introduced which the ratio of natural frequency ωn to 

that of nanobeams without surface effects. Figure 3 

gives the results for size dependent behavior of NNF for 

one-step nanobeams. 

According to Figure 3, it is seen that as D2 gets 

higher, the surface effects reduce. In addition, the 

surface effects on the natural frequency are higher at 

longer nanobeams. The positive surface residual stress 

increases the natural frequency but the negative one 

decreases. Moreover, sensitivity of the problem to 

D2/D1 is higher for longer nanobeams. Also, in the 

cases of nanobeams with total lengths lower than 30 nm, 

the whole structure may be modeled as a uniform 

nanobeam with a simple solution with errors less than 

%15. In addition, in general the nanobeams with 

negative surface effects must be modeled more precisely 

since their natural frequency extremely depend on the 

magnitude of D2  . 

Next, the vibration problem is solved for two-step 

nanobeams with the numerical results given in Figure 4. 

From this figure, it is seen that, for the constant 

length of the nanobeams, NNF can be taken 

independent of D3 but with an engineering 

approximation. Moreover, it is observed that thickening 

and shortening of one section of the step-wised 

 

 

 
Figure 3. NNF of the one-step nanobeams based on different 

beam theories (D1 = 10 nm, L1 = L2) 

nanobeams reduces the effect of surface properties on 

the fundamental natural frequency.  

For the next simulation, it is tried to clarify the effect 

of proper modeling of the non-uniform nanobeam on its 

vibration analysis. For this purpose, a non-uniform 

nanobeam is once solved by the developed method in 

this section and again is considered as a uniform 

nanobeam with mean diameter. The ratio of the results 

of this analysis is plotted versus D2 in Figure 5. 

 

 

 
(a) 

 
(b) 

Figure 4. NNF of the two-step nanobeams (a): D3 = 8 nm, D1 

= 10 nm and (b): L = 90 nm, D1 = 10 nm 

 
 

 
Figure 5. Significance of modeling for proper prediction of 

NNF for non-uniform nanobeams (D1 = 10 nm) 
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Figure 6. First mode shape of the one-step nanobeams 

 

 

From this figure, it is observed that in the vibration 

analyses when the diameters of two adjacent sections 

differ only in %20, the non-uniform nanobeam can be 

treated as uniform ones. Otherwise, it is preferred to 

solve the problem properly.  

Furthermore, it is tried to investigate size effects on 

the mode shapes of the nanobeam. Figure 6 shows the 

surface effects on the first mode shapes of the 

nanobeam. 

From Figure 6 it is seen that even though large 

values of surface parameters are examined, but the 

mode shape is not dependent on their value either the 

surface parameters be positive or negative. However, it 

is observed that location of the peak of the principal 

mode shape depends on the value of surface effects but 

its magnitude is not changed by variation of these 

parameters. Also, it should be mentioned that force F is 

an axial force. 

Also, Figure 7 shows the surface effects on the 

second mode shape of the one-step nanobeam: 

In spite of the principal mode shape, Figure 6 

illustrates extreme dependence of the second mode 

shape of a non-uniform nanobeam on the magnitude of 

surface properties. Generally it is observed that the 

thinner section is more affected in this case but it is to 

be noted that the mode shape must be interpreted for the 

whole structure. From Figure 7 it is seen that location of 

nodes and peaks of the mode shape changes 

considerably with changes of surface parameters. It can 

be intrepreted that the surface parameter causes 

considerable changing of the beam rigidity. In addition, 

the amplitude of the mode shape in this case is highly 

dependent on the surface properties. It is to be noted, 

more variation in the nanobeam’s cross section, more 

changes in mode shapes by surface effects. In addition, 

the location of peaks and nodes is pushed toward the 

thinner section for negative values of surface effects and 

conversely toward the thicker section for positive ones . 

Furthermore, Figure 8 shows the effect of surface 

properties on the second mode shape of the two-step 

nanobeam. 

 
Figure 7. Second mode shape of the one-step nanobeams 

 

 

 
Figure 8. Second mode shape of the two-step nanobeams 

 

 

It is seen that the surface effects are less than the 

previous case of Figure 7 since the relative length of the 

thinner section is reduced but generally the shape of the 

thinner section is changed considerably. As an 

important conclusion, it is observed, positive surface 

parameters make the mode shape more uniform and 

reduce its amplitude. In this case, it is observed that the 

location of peaks is not so dependent on the magnitude 

of surface properties. 

 

 

5. CONCLUSION 
 

In this paper, size-dependent vibrations of stepped 

nanobeams have been studied with consideration of the 

surface elasticity theory. The nanobeams are modeled as 

stepped beams and size-dependent governing vibration 

equations have been derived considering compatibility 

conditions in stepped sections. Then, an analytical 

solution has been developed to simulate natural 

frequencies and mode shapes of the nanobeam with 
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various surface properties. The obtained results indicate 

that as one section of a step-wised nanobeam gets 

shorter; the effect of surface properties on the natural 

frequency of the nanobeam reduces considerably. In 

addition, the nanobeams with negative surface effects 

must be modeled more precisely since their natural 

frequency extremely depend on the diameter magnitude.  

In fact, proper modeling and choosing the number of 

steps plays important roles in proper determination of 

the vibration behavior of non-uniform nanobeams. 

Moreover, it is seen that the corresponding mode shapes 

of the nanobeam in some case are extremely dependent 

on the magnitude of surface effects while their 

amplitude and locations of nodes and peaks varies a lot 

by changes of surface effects. It is observed that the 

thinner section is more affected in this case but it is to 

be noted that the mode shape must be interpreted for the 

whole structure. Finally, the obtained results illustrate 

the capability of the proposed method to model and 

analyze the size-dependent vibration of the nanobeams 
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Persian Abstract 

 چکیده 
ای مدلسازی شده  پردازد. برای این منظور، نانوتیر به عنوان تیر پلهاین مقاله به بررسی ارتعاش وابسته به ابعاد نانوتیرهای پله ای با در نظر گرفتن تئوری الاستیسیته سطحی می

انسهای طبیعی و شکل مودهای نانوتیر با در نظر  آید. سپس یک حل تحلیلی برای شبیه سازی فرکسازگاری بدست می  ت حاکم ارتعاشی آن با در نظر گرفتن شرایطلاد و معا

شود. نتایج نشان  شود. همچنین، یک رویکرد بازگشتی برای صحت سنجی نتایج و محاسبه مدول الاستیسیته وابسته به ابعاد پیشنهاد میگرفتن اثرات سطح، گسترش داده می

نس طبیعی نانوتیر غیریکنواخت دارد. همچنین، برخلاف تیرهای یکنواخت، شکل مودهای نانوتیرهای  ها، اثر چشمگیری بر فرکادهد که اثرات سطح و انتخاب مناسب پلهمی

 غیریکنواخت به شدت وابسته به اثرات سطح است.
 


