Optimization of Green Technique Develop for Europium (III) Extraction by using Phosphonium Ionic Liquid and Central Composite Design Approach

Document Type : Original Article


1 Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute

2 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute


Rare earth compounds widely used in industrial applications and new processes with green solvents are appropriate for recovering these elements. In this study, the ionic liquid application development was investigated to extract europium ions in single and binary systems. A green procedure for europium (III) extraction from aqueous chloride solution was investigated using phosphonium ionic liquid Cyphos IL 104. Comparative conditions were investigated for analyzing better results with the presence of organic extractant such as Cyanex272, D2EHPA in the batch experiments. The experiment design was carried out based on the central composite design principles to analyze the relationships between the responses and the significant parameters. The obtained data revealed that the quadratic equation has good desirability to predict the extraction percentage. Investigation of the extraction process showed that the ionic liquid Cyphos IL104 has selective power in the extraction of europium and the efficiency is higher than the organophosphorus extractants. Accordingly, optimum conditions for maximum removal of europium ions were obtained equal to 5.5, 1, 16 min, and 0.008 M for feed acidity (pH), phase ratio, time, Cyphos IL 104 concentration. Examination of binary systems of rare earth elements showed that ionic liquid had positive and negative effects on the separation factor. The high efficiency of ionic liquid in the reuse condition indicated that the system is appropriate from an economic perspective.


1.     Asadollahzadeh, M., Torkaman, R., and Torab-Mostaedi, M. “Extraction and Separation of Rare Earth Elements by Adsorption Approaches: Current Status and Future Trends”, Separation and Purification Reviews, Article in Press (2020) DOI:10.1080/ 15422119. 2020.1792930.
2.     Gallucci, R.H.  “Risk-Reduction Credit for Very Early Warning Fire Detection at Nuclear Power Plants: From FAQ to Fiction”, Civil Engineering Journal, Vol. 5, No. 2, (2019), 309-319. DOI: 10.28991/cej-2019-03091246
3.     Gallucci, R.H. “Risk-Deformed Regulation: What Went Wrong with NFPA 805”, Civil Engineering Journal, Vol. 4, No.12, (2018), 2894-2876. DOI: 10.28991/cej-03091205
4.     Torkaman, R., Safdari, J., Torab-Mostaedi, M., Moosavian, M.A., Asadollahzadeh, M. “Extraction of samarium and gadolinium from aqueous nitrate solution with D2EHPA in a pulsed disc and doughnut column”, Journal of the Taiwan Institute of Chemical Engineers, Vol. 48, (2015), 18-25. DOI: 10.1016/ j.jtice. 2014. 10.016.
5.     Balaram, V. “Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact”, Geoscience Frontiers, Vol. 10, No. 4, (2019), 1285-1303. DOI: 10.1016/j.gsf.2018.12.005
6.     Theingi, M., Tun, K.T., and Aung, N.N. “Preparation, Characterization and Optical Property of LaFeO3 Nanoparticles via Sol-Gel Combustion Method”, SciMedicine Journal, Vol. 1, (2019), 151-157. DOI: 10.28991/SciMedJ-2019-0103-5
7.     Ali, S.H. “Social and Environmental Impact of the Rare Earth Industries”, Resources, Vol. 3, No.1, (2014), 123-134. DOI: 10.3390/resources3010123
8.     Parsa, N., Khajouei, G., Masigol, M., Hasheminejad, H., and Moheb, A. “Application of Electrodialysis Process for Reduction of Electrical Conductivity and COD of Water Contaminated By Composting Leachate”, Civil Engineering Journal, Vol. 4, No. 5, (2018), 1034-1045. DOI: 10.28991/cej-0309154
9.     Jha, M.K., Kumari, A., Panda, R., Kumar, J.R., Yoo, K., and Lee, J.Y. “Review on hydrometallurgical recovery of rare earth metals”, Hydrometallurgy, Vol. 165, (2016), 2-26. DOI: 10.1016/ j.hydromet. 2016.01.035
10.   Laguel, S., and Samar, M.H. “Removal of Europium(III) from water by emulsion liquid membrane  using Cyanex 302 as a carrier”, Desalination Water Treatment, Vol. 165, (2019), 269-280. DOI:10.5004/ dwt.2019.24551
11.   Belova, V.V. “Development of solvent extraction methods for recovering rare earth metals”, Theoretical Foundation Chemical Engneering, Vol. 51, (2017), 599-609. DOI: 10.1134/S004057951605002X
12.   Asadollahzadeh, M., Torkaman, R., and Torab-Mostaedi, M. “Recovery of gadolinium ions based on supported ionic liquid membrane: parametric optimization via central composite design approach”, International Journal of Environmental Science and Technology, Vol. 17, (2020) 3983-3996. DOI: 10.1007/s13762-020-02743-8
13.   Asadollahzadeh, M., Torkaman, R., and Torab-Mostaedi, M. “Recovery of yttrium ions from fluorescent lamp waste through supported ionic liquid membrane: process optimisation via response surface methodology”, International Journal of Environmental Analytical Chemistry, Article in Press, (2020), DOI: 10.1080/ 03067319. 2020.1763976.
14.   Hidayah, N.N., and Abidin, S.Z. “The evolution of mineral processing in extraction of rare earth elements using liquid-liquid extraction: A review”, Minerals Engineering, Vol. 121, (2018), 146-157. DOI: 10.1016/j.mineng.2018.03.018
15.   Tunsua, C., Lapp, J.B., Ekberg, C., and Retegan, T. “Selective separation of yttrium and europium using Cyanex 572 for applications in fluorescent lamp waste processing”, Hydrometallurgy, Vol. 166, (2016), 98-106. DOI: 10.1016/j.hydromet.2016.10.012.
16.   Lu, X., Zhang, D., He, S., Feng, J., Reda, A.T., Liu, C., Yang, Z., Shi, L., and Li, J. “Reactive extraction of europium(III) and neodymium(III) by carboxylic acid modified calixarene derivatives: Equilibrium, thermodynamics and kineticsc”, Separation and Purification Technology, Vol. 188, (2017), 250-259. DOI: 10.1016/j.seppur.2017.07.040
17.   Torkaman, R., Torab-Mostaedi, M., Asadollahzadeh, M., “Studies of Drop Behavior and Prediction of Sauter Mean Drop Diameter in Various Rotary Agitated Extraction Columns”, International Journal of Engineering, Transactions B: Applications, Vol. 29, No. 8, (2016) 1047-1055. DOI: 10.5829/ idosi.ije.2016.29.08b.03
[18.  Asadollahzadeh, M., Shakib, B., Torab-Mostaedi, M., Outokesh, M. “Extraction of Molybdenum (VI) and Vanadium (V) from Nitrate Solutions Using Coupling of Acid and Solvating Extractants”, International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 10 (2019) 1366-1371. DOI:  10.5829/ije.2019.32.10a.0
19.   Asadollahzadeh, M., Torkaman, R., and Torab-Mostaedi, “Optimization of lanthanum extraction in asymmetric rotation pilot plant column by using central composite methodology”, Geosystem Engineering, Vol. 23, No. 2, (2020), 101-111. DOI: 10.1080/ 12269328. 2020. 1719905.
20.   Torkaman, R., Asadollahzadeh, M., and Torab-Mostaedi, M.  “Determination of slip and characteristic velocities in reactive extraction with experiments in the Oldshue-Rushton column and presence of samarium and gadolinium metals”, Chemical Engineering and Processing, Vol. 111, (2017) 7-13. DOI: 10.1016/j.cep.2016.10.018
21.   Asadollahzadeh, M., Torkaman, R., and Torab-Mostaedi, M. “Coupling minimum cross-entropy model with experimental data to determine the drop size distribution for lanthanum extraction in ARDC column”, Separation Science and Technology, Article in Press, (2020), DOI:10.1080/01496395.2020.1754429.
[22.  Asadollahzadeh, M., Torkaman, R., and Torab-Mostaedi, M. “Study on the feasibility of using a pilot plant Scheibel extraction column for the extraction and separation of lanthanum and cerium from aqueous solution”, Korean Journal of Chemical Engineering, Vol. 37 (2020) 322-331. DOI: 10.1007/s11814-019-0443-3.
23.   Asadollahzadeh, M., Torkaman, R., Torab-Mostaedi, and M., Moazami, F. “Estimation of Performance with the Two Truncated Probability Density Functions, Case Study: Using Mixco Column to Extract Samarium and Gadolinium”, Separation Science Technology, Article in Press, (2020), DOI:10.1080/ 01496395. 2020.1757713.
24.   Shakib, B., Torab-Mostaedi, M., Outokesh, M., and Asadollahzadeh, M. “Direct extraction of Mo(VI) from sulfate solution by synergistic extractants in the rotation column”, Chinese Journal of Chemical Engineering, Vol. 28, No. 2, (2019), 445-455. DOI: 10.1016/ j.cjche. 2019.11.011.
25.   Zhang, J., Zhao, B., and Schreiner, B. “Separation Hydrometallurgy of Rare Earth Elements”, Springer, New York (2018).
26.   Pradhan, S., Swain, N., Prusty, S., Sahu, R.K., and Mishra, S. “Role of extractants and diluents in recovery of rare earths from waste materials”, Materials Today, Vol. 30, (2020), 239-245. DOI: 10.1016/ j.matpr. 2020.01.288
27.   Wang, K., Adidharm, H., Radosz, M., Wan, P., Xu, X., Russell, C.K., Tian, H., Fan, M., and Yu, J. “Recovery of rare earth elements with ionic liquids”, Green Chemistry, Vol. 19, (2017), 4469-4493. DOI: 10.1039/C7GC02141K
28.   Asadollahzadeh, M., Torkaman, R., Torab-Mostaedi, M., Hemmati, A., and Ghaemi, A. “High performance separation of gadolinium from samarium with the imidazolium ionic liquid through selective complexation of organophosphorus extractants”, Environmental Technology & Innovation, Vol. 19, (2020), 100979. DOI: 10.1016/j.eti.2020.100979.
29.   Asadollahzadeh, M., Torkaman, R., Torab-Mostaedi, M., and Hemmati, A. “Enhancing Cerium Recovery from Leaching Solution of Glass Polishing Powder Waste Using Imidazolium Ionic Liquid”, Waste and Biomass Valorization, Article in Press, (2020). DOI:10.1007/s12649-020-01070-w.
30.   Abhilash; Akcil, A. “Critical and Rare Earth Elements: Recovery from Secondary Resources”, CRC Press, New York, (2019).
31.   Chen, J. “Application of Ionic Liquids on Rare Earth Green Separation and Utilization”, Springer, New York, (2016).
32.   Banda, R., Forte, F., Onghena, B., and Binnemans, K. “Yttrium and europium separation by solvent extraction with undiluted thiocyanate ionic liquids”, RSC Advances, Vol. 9, (2019), 4876-4883. DOI: 10.1039/C8RA09797F
33.   Dai, Y., Cao, B., Zhong, S., Xie, G., Wang, Y., Liu, Y., Zhang, Z., Liu, Y., and Cao, X. “Homogeneous liquid–liquid extraction of europium from aqueous solution with ionic liquids”, Journal of Radioanalytical Nuclear Chemistry, Vol. 319, No. 3, (2019), 1219-1225. DOI: 10.1007/s10967-019-06419-7
34.   Asadollahzadeh, M., Torkaman, R., and Torab-Mostaedi, M. “Continuous Extraction of Europium(III) by Ionic Liquid in the Rotating Disk Column with an Asymmetrical Structure Aimed at the Evaluation of Reactive Mass Transfer”, ACS Omega, Vol.5, No.30, (2020), 18700-18709. DOI: 10.1021/acsomega.0c01636
35.   Sun, T., Zhang, Y., Wu, Q., Chen, J., Xia, L., and Icon, C.X.O. (2017) “Comparative study on the extraction of trivalent americium and europium by CMPO in imidazolium-based ionic liquids and dodecane”, Solvent Extraction Ion Exchange, Vol. 35, No. 6, (2017), 408-422. DOI: 10.1080/ 07366299. 2017.1379142
36.   Tan, C., Zhang, X., Cao, S., Li, S., Guo, H., Tian, Y., Chena, D., Tian, W., Wang, L., and Qin, Z.  “Solvent extraction of americium(III) and europium(III) with 2,6-bis(5,6-diethyl-1,2,4-triazin-3-yl) pyridine in ionic liquids: Experimental study and molecular dynamics simulation”, Separation Purification and Technology, Vol. 192, (2018), 302-308. DOI: 10.1016/j.seppur.2017.09.033
37.   Rao, C.V., Rout, A., and Venkatesan, K.A. “Europium(III) complexation behaviour in an alkyl ammonium ionic liquid medium containing neutral extractants”, Separation Purification and Technology, Vol. 213, (2019), 545-552. DOI: 10.1016/ j.seppur. 2018.12.076
38.   Atanassova, M., and Kurteva, V. “Synergism in the Solvent Extraction of Europium(III) with Thenoyltrifluoroacetone and CMPO in Methylimidazolium Ionic Liquids”, Journal of Solution Chemistry, Vol. 48, No. 1, (2019), 15-30. DOI: 10.1007/s10953-019-00844-8
39.   Ismail, N.A., Yunus, M.Y.M., Aziz, M.A.A., Abidin, M.A., “Comparison of optimal solvent extraction stages between P204 and [A336][P204] for the separation of europium and gadolinium”, IOP Conference Series: Materials Science and Engineering, Kuantan, Pahang, Malaysia, 2019.
40.   Niu, Y.N., Ren, P., Zhang, F., Yan, Z.Y. “Solvent extraction of Eu3+ with 4-oxaheptanediamide into ionic liquid system”, Separation Science and Technology, Vol. 53, No. 17, (2018), 2750-2755. DOI: 10.1080/ 01496395. 2018.1471507
41.   Larsson, K., Binnemans, K. “Separation of Rare Earths by Solvent Extraction with an Undiluted Nitrate Ionic Liquid”, Journal of Sustainable Metallurgy, Vol. 3, (2016), 73-78. DOI: 10.1007/s10953-019-00844-8
42.   Mishra, B.B., and Devi, N. “Solvent extraction and separation of europium (III) using a phosphonium ionic liquid and an organophosphorus extractant-A comparative study”, Journal of Molecular Liquids, Vol. 271, (2018), 389-396. DOI: 10.1016/ j.molliq. 2018.08.160