Splicing Image Forgery Detection and Localization Based on Color Edge Inconsistency using Statistical Dispersion Measures

Document Type : Original Article


1 Faculty of Computer Engineering, Payame Noor University of birjand, Birjand, Iran

2 Faculty of Computer Engineering and IT, Shahrood University of Technology, Shahrood, Iran


Nowadays, due to the availability of low-cost and high-resolution digital cameras, and the rapid growth of user-friendly and advanced digital image processing tools, challenges for ensuring authenticity of digital images have been raised. Therefore, development of reliable image authenticity verification techniques has high importance in digital life. In this paper, we proposed a blind image splicing detection method based on color distribution in the neighborhood of edge pixels. First, we extracted edge pixels using contourlet transform. Then, to accurately distinguish the authentic edges from tampered ones, Interquartile Range (IQR) criteria are utilized to illustrate the distribution of Cr and Cr histograms of the spliced boundaries in YCbCr color space. Finally, a segmentation method is used to improve the localization performance and to reduce especially the computational time. The effectiveness of the method has been demonstrated by our experimental results obtained using the Columbia Image Splicing Detection Evaluation (CISED) dataset in terms of specificity and accuracy. It is observed that the proposed method outperforms some state-of-the-art methods. The detection accuracy is approximately 97 with 100% specificity.


1.     Huynh, T.K., Huynh, K.V., Le-Tien, T. and Nguyen, S.C., "A survey on image forgery detection techniques", in The 2015 IEEE RIVF International Conference on Computing & Communication Technologies-Research, Innovation, and Vision for Future (RIVF), IEEE. 71-76. DOI: 10.1109/RIVF.2015.7049877
2.     Gill, N.K., Garg, R. and Doegar, E.A., "A review paper on digital image forgery detection techniques", in 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), IEEE. 1-7. DOI:10.1109/ICCCNT.2017.8203904
3.     Li, X., Jing, T. and Li, X., "Image splicing detection based on moment features and hilbert-huang transform", in 2010 IEEE International Conference on Information Theory and Information Security, IEEE. 1127-1130. DOI:10.1109/ICITIS.2010.5689754
4.     De Carvalho, T.J., Riess, C., Angelopoulou, E., Pedrini, H. and de Rezende Rocha, A., "Exposing digital image forgeries by illumination color classification", IEEE Transactions on Information Forensics and Security,  Vol. 8, No. 7, (2013), 1182-1194. DOI: 10.1109/TIFS.2013.2265677
5.     Mushtaq, S. and Mir, A.H., "Novel method for image splicing detection", in 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE. 2398-2403. DOI:10.1109/ICACCI.2014.6968386
6.     Muhammad, G., Al-Hammadi, M.H., Hussain, M. and Bebis, G., "Image forgery detection using steerable pyramid transform and local binary pattern", Machine Vision and Applications,  Vol. 25, No. 4, (2014), 985-995. DOI: https://doi.org/10.1007/s00138-013-0547-4
7.     Farid, H., "A survey of image forgery detection", IEEE Signal Processing Magazine,  Vol. 2, No. 26, (2009), 16-25.
8.     Mahalakshmi, S.D., Vijayalakshmi, K. and Priyadharsini, S., "Digital image forgery detection and estimation by exploring basic image manipulations", Digital Investigation,  Vol. 8, No. 3-4, (2012), 215-225. DOI: https://doi.org/10.1016/j.diin.2011.06.004
9.     Cao, G., Zhao, Y. and Ni, R., "Edge-based blur metric for tamper detection", Journal of Information Hiding and Multimedia Signal Processing,  Vol. 1, No. 1, (2010), 20-27.
10.   Kirchner, M. and Fridrich, J., "On detection of median filtering in digital images", in Media forensics and security II, International Society for Optics and Photonics. Vol. 7541, 754110. DOI:  https://doi.org/10.1117/12.839100
11.   Birajdar, G.K. and Mankar, V.H., "Digital image forgery detection using passive techniques: A survey", Digital Investigation,  Vol. 10, No. 3, (2013), 226-245. DOI: https://doi.org/10.1016/j.diin.2013.04.007
12.   Lin, Z., Wang, R., Tang, X. and Shum, H.-Y., "Detecting doctored images using camera response normality and consistency", in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), IEEE. Vol. 1, 1087-1092. DOI:10.1109/CVPR.2005.125
13.   Hsu, Y.-F. and Chang, S.-F., "Detecting image splicing using geometry invariants and camera characteristics consistency", in 2006 IEEE International Conference on Multimedia and Expo, IEEE. 549-552.DOI: 10.1109/ICME.2006.262447
14.   He, Z., Sun, W., Lu, W. and Lu, H., "Digital image splicing detection based on approximate run length", Pattern Recognition Letters,  Vol. 32, No. 12, (2011), 1591-1597. DOI: https://doi.org/10.1016/j.patrec.2011.05.013
15.   Dong, J., Wang, W., Tan, T. and Shi, Y.Q., "Run-length and edge statistics based approach for image splicing detection", in International workshop on digital watermarking, Springer. 76-87. DOI: https://doi.org/10.1007/978-3-642-04438-0_7
16.   Zhou, Z.-p. and Zhang, X.-x., "Image splicing detection based on image quality and analysis of variance", in 2010 2nd International Conference on Education Technology and Computer, IEEE. Vol. 4, 4-242-V244-246. DOI:10.1109/ICETC.2010.5529692
17.   Qazi, T., Hayat, K., Khan, S.U., Madani, S.A., Khan, I.A., KoƂodziej, J., Li, H., Lin, W., Yow, K.C. and Xu, C.-Z., "Survey on blind image forgery detection", IET Image Processing,  Vol. 7, No. 7, (2013), 660-670. DOI: 10.1049/iet-ipr.2012.0388
18.   Wang, W., Dong, J. and Tan, T., "Effective image splicing detection based on image chroma", in 2009 16th IEEE International Conference on Image Processing (ICIP), IEEE. 1257-1260. DOI:10.1109/ICIP.2009.5413549
19.   Fang, Z., Wang, S. and Zhang, X., "Image splicing detection using color edge inconsistency", in 2010 International Conference on Multimedia Information Networking and Security, IEEE. 923-926. DOI:10.1109/MINES.2010.196
20.   Do, M.N. and Vetterli, M., "Contourlets: A directional multiresolution image representation", in Proceedings. International Conference on Image Processing, IEEE. Vol. 1, I-I. DOI:10.1109/ICIP.2002.1038034
21.   Barani, M.J., Ayubi, P., Jalili, F., Valandar, M.Y. and Azariyun, E., "Image forgery detection in contourlet transform domain based on new chaotic cellular automata", Security and Communication Networks,  Vol. 8, No. 18, (2015), 4343-4361. DOI: https://doi.org/10.1002/sec.1365
22.   Ma, S.-f., Zheng, G.-f., Jin, L.-x., Han, S.-l. and Zhang, R.-f., "Directional multiscale edge detection using the contourlet transform", in 2010 2nd International Conference on Advanced Computer Control, IEEE. Vol. 2, 58-62. DOI:10.1109/ICACC.2010.5487180
23.   Do, M.N. and Vetterli, M., "The contourlet transform: An efficient directional multiresolution image representation", IEEE Transactions on Image Processing,  Vol. 14, No. 12, (2005), 2091-2106. DOI: 10.1109/TIP.2005.859376
24.   Lee, J., "Advanced electrical and electronics engineering, Springer,  (2011).
25.   Sencar, H.T., Velastin, S., Nikolaidis, N. and Lian, S., "Intelligent multimedia analysis for security applications, Springer,  Vol. 282,  (2010).
26.   Do, M.N. and Vetterli, M., "Framing pyramids", IEEE Transactions on Signal Processing,  Vol. 51, No. 9, (2003), 2329-2342. DOI: 10.1109/TSP.2003.815389
27.   Luo, W., Huang, J. and Qiu, G., "Robust detection of region-duplication forgery in digital image", in 18th International Conference on Pattern Recognition (ICPR'06), IEEE. Vol. 4, 746-749. DOI: 10.1109/ICPR.2006.1003
28.   Hussain, M., Muhammad, G., Saleh, S.Q., Mirza, A.M. and Bebis, G., "Image forgery detection using multi-resolution weber local descriptors", in Eurocon 2013, IEEE. 1570-1577. DOI: 10.1109/EUROCON.2013.6625186
29.   Zhao, J. and Guo, J., "Passive forensics for copy-move image forgery using a method based on dct and svd", Forensic Science International,  Vol. 233, No. 1-3, (2013), 158-166. DOI: https://doi.org/10.1016/j.forsciint.2013.09.013
30.   Upton, G. and Cook, I., "Understanding statistics, Oxford University Press,  (1996).
31.   Zwillinger, D. and Kokoska, S., "Crc standard probability and statistics tables and formulae, Crc Press,  (1999).
32.   Yang, A.Y., Wright, J., Ma, Y. and Sastry, S.S., "Unsupervised segmentation of natural images via lossy data compression", Computer Vision and Image Understanding,  Vol. 110, No. 2, (2008), 212-225. DOI: https://doi.org/10.1016/j.cviu.2007.07.005
33.   Nock, R. and Nielsen, F., "Statistical region merging", IEEE Transactions on Pattern Analysis and Machine Intelligence,  Vol. 26, No. 11, (2004), 1452-1458. DOI: 10.1109/TPAMI.2004.110
34.   Arbelaez, P., Maire, M., Fowlkes, C. and Malik, J., "Contour detection and hierarchical image segmentation", IEEE Transactions on Pattern Analysis and Machine Intelligence,  Vol. 33, No. 5, (2010), 898-916. DOI: 10.1109/TPAMI.2010.161
35.   Columbia, D., Research lab: Columbia image splicing detection evaluation dataset. 2004.
36.   Le-Tien, T., Phan-Xuan, H., Nguyen-Chinh, T. and Do-Tieu, T., "Image forgery detection: A low computational-cost and effective data-driven model", International Journal of Machine Learning and Computing,  Vol. 9, No. 2, (2019). DOI: 10.18178/ijmlc.2019.9.2.784
37.   Huh, M., Liu, A., Owens, A. and Efros, A.A., "Fighting fake news: Image splice detection via learned self-consistency", in Proceedings of the European Conference on Computer Vision (ECCV). 101-117.
38.   Xiao, B., Wei, Y., Bi, X., Li, W. and Ma, J., "Image splicing forgery detection combining coarse to refined convolutional neural network and adaptive clustering", Information Sciences,  Vol. 511, (2020), 172-191. DOI: https://doi.org/10.1016/j.ins.2019.09.038
39.   Abrahim, A.R., Rahim, M.S.M. and Sulong, G.B., "Splicing image forgery identification based on artificial neural network approach and texture features", Cluster Computing,  Vol. 22, No. 1, (2019), 647-660.
40.   Jaiswal, A.K. and Srivastava, R., "A technique for image splicing detection using hybrid feature set", Multimedia Tools and Applications,  (2020), 1-24.
41.   Zhang, Y., Zhao, C., Pi, Y. and Li, S., Revealing image splicing forgery using local binary patterns of dct coefficients, in Communications, signal processing, and systems. 2012, Springer.181-189. DOI: https://doi.org/10.1007/978-1-4614-5803-6_19
42.   He, Z., Lu, W., Sun, W. and Huang, J., "Digital image splicing detection based on markov features in dct and dwt domain", Pattern Recognition,  Vol. 45, No. 12, (2012), 4292-4299. DOI: https://doi.org/10.1016/j.patcog.2012.05.014
43.   Agarwal, S. and Chand, S., "Image forgery detection using multi scale entropy filter and local phase quantization", International Journal of Image, Graphics & Signal Processing,  Vol. 7, No. 10, (2015). DOI: 10.5815/ijigsp.2015.10.08
44.   Saleh, S.Q., Hussain, M., Muhammad, G. and Bebis, G., "Evaluation of image forgery detection using multi-scale weber local descriptors", in International Symposium on Visual Computing, Springer. 416-424. DOI: https://doi.org/10.1007/978-3-642-41939-3_40
45.   Zhao, X., Li, S., Wang, S., Li, J. and Yang, K., "Optimal chroma-like channel design for passive color image splicing detection", EURASIP Journal on Advances in Signal Processing,  Vol. 2012, No. 1, (2012), 240. DOI: https://doi.org/10.1186/1687-6180-2012-240
46.   Park, T.H., Han, J.G., Moon, Y.H. and Eom, I.K., "Image splicing detection based on inter-scale 2d joint characteristic function moments in wavelet domain", EURASIP Journal on Image and Video Processing,  Vol. 2016, No. 1, (2016), 30.
47.   Han, J.G., Park, T.H., Moon, Y.H. and Eom, I.K., "Efficient markov feature extraction method for image splicing detection using maximization and threshold expansion", Journal of Electronic Imaging,  Vol. 25, No. 2, (2016), 023031. DOI: https://doi.org/10.1117/1.JEI.25.2.023031
48.   Rao, Y. and Ni, J., "A deep learning approach to detection of splicing and copy-move forgeries in images", in 2016 IEEE International Workshop on Information Forensics and Security (WIFS), IEEE. 1-6. DOI: 10.1109/WIFS.2016.7823911
49.   Zhao, X., Wang, S., Li, S. and Li, J., "Passive image-splicing detection by a 2-d noncausal markov model", IEEE Transactions on Circuits and Systems for Video Technology,  Vol. 25, No. 2, (2014), 185-199. DOI: 10.1109/TCSVT.2014.2347513
50.   Zhang, Q., Lu, W. and Weng, J., "Joint image splicing detection in dct and contourlet transform domain", Journal of Visual Communication and Image Representation,  Vol. 40, (2016), 449-458. DOI: https://doi.org/10.1016/j.jvcir.2016.07.013
51.   Pomari, T., Ruppert, G., Rezende, E., Rocha, A. and Carvalho, T., "Image splicing detection through illumination inconsistencies and deep learning", in 2018 25th IEEE International Conference on Image Processing (ICIP), IEEE. 3788-3792.DOI: 10.1109/ICIP.2018.8451227