Experimental Study on Mechanical, Thermal and Antibacterial Properties of Hybrid Nanocomposites of PLA/CNF/Ag

Document Type : Original Article

Authors

Department of Mechanical Engineering, Najafabad branch, Islamic Azad University, Najafabad, Iran.

Abstract

The main purpose of this study is to prepare the nanocomposite samples with synergistic properties containing the mechanical, thermal and antibacterial properties. For this purpose, the combination of cellulose nanofiber (CNF) and Ag (silver) nanoparticles were incorporated into polylactic acid (PLA) matrix by solution casting method. The CNF in constant content of 1 wt.% and Ag nanoparticles in the content of 1, 3, and 5 wt.% were incorporated into the PLA matrix. The structure and morphology of the nanocomposite samples was characterized by FE-SEM, and mechanical, antibacterial, and thermal properties of the nanocomposites were evaluated by tensile, agar disk-diffusion, and DSC tests, respectively. FE-SEM images showed the uniform dispersion of the nanoparticles within the polymer matrix. The simultaneous addition of two nanoparticles significantly raised the mechanical properties such as tensile strength and tensile modulus by 40% and 9%, respectively. However, CNF had no considerable effect on the thermal and antibacterial properties of the PLA matrix. Unlike CNF, Ag nanoparticles significantly improved the antibacterial properties of the nanocomposites against staphylococcus aureus and Escherichia coli bacteria, and enhanced the thermal stability of the PLA matrix. Ag nanoparticles improved the degree of crystallinity of PLA from 10.5% to 17.9%, and Tm from 147.8 to 153.6 °C. By incorporating 5wt.% Ag nanoparticles, the inhibition duameter increased from 20 mm to 39 mm for staphylococcus aureus.    

Keywords


  1. Sari, M. G., Vahabi, H., Gabrion, X., Laheurte, P., Zarrintaj, P., Formela, K., Saeb, M. R. "An attempt to mechanistically explain the viscoelastic behavior of transparent epoxy/starch-modified ZnO nanocomposite coatings", Progress in Organic Coatings, Vol. 119, (2018), 171-182, DOI:10.1016/j.porgcoat.2018.02.016
  2. Zarrintaj, P., Ahmadi, Z., Saeb, M. R., Mozafari, M. "Poloxamer-based stimuli-responsive biomaterials", Materials Today: Proceedings, Vol. 5, No. 7, (2018), 15516-15523, DOI:10.1016/j.matpr.2018.04.158
  3. Gutiérrez, T. J., Alvarez, V. A. "Bionanocomposite films developed from corn starch and natural and modified nano-clays with or without added blueberry extract", Food Hydrocolloids, Vol. 77, (2018), 407-420, DOI:10.1016/j.foodhyd.2017.10.017
  4. Gutiérrez, T. J. Polymers for Food Applications. Springer, 2018, doi:10.1007/978-3-319-94625-2_1.
  5. Babu R. P., O'Connor, K., Seeram, R. "Current progress on bio-based polymers and their future trends", Progress in Biomaterials, No. 1, (2013), 8. DOI:10.1186/2194-0517-2-8
  6. Ebnesajjad, S., Handbook of biopolymers and biodegradable plastics: properties, processing and applications. William Andrew, 2012.
  7. Zhang, X., Liu, X., Yang, C., Li, N., Ji, T., Yan, K., Zhu, B., Yin, J., Zhao, J., Li, Y. "A V2O5-nanosheets-coated hard carbon fiber fabric as high-performance anode for sodium ion battery", Surface and Coatings Technology, Vol. 358, (2019), 661-666, DOI:10.1016/j.surfcoat.2018.11.096.
  8. Zhou, Y., Lei, L., Yang, B., Li, J., Ren, J. "Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites", Polymer Testing, Vol. 68, (2018), 34-38, DOI:10.1016/j.polymertesting.2018.03.044.
  9. Samsudin, H., Auras, R., Mishra, D., Dolan, K., Burgess, G., Rubino, M, Selke, S., Soto-Valdez, H. "Migration of antioxidants from polylactic acid films: A parameter estimation approach and an overview of the current mass transfer models", Food Research International, Vol. 103, (2018), 515-528, DOI:10.1016/j.foodres.2017.09.021.

10.   Liu, Y., Yin, J., Liu, X., Zhao, X., Chen, M., Li, J., Zhao, H., Zhu, C., Su, B. "Fabrication of polymer composite films with carbon composite nanofibers doped MWNTs-OH for multilevel memory device application", Composites Part B: Engineering, Vol. 156, (2019), 252-258, DOI:10.1016/j.compositesb.2018.08.045.

11.   Hamedi, G.H., Sohrabi, M., Sakanlou, F. "Comparing the Effect of Nanomaterial and Traditional Fillers on the Asphalt Mixture Properties", Civil Engineering Journal, Vol. 5, No. 2, (2019), 320-331, DOI: 10.28991/cej-2019-03091247

12.   Saedi, S., Oruc, S. "The Effects of Nano Bentonite and Fatty Arbocel on Improving the Behavior of Warm Mixture Asphalt against Moisture Damage and Rutting", Civil Engineering Journal, Vol. 6, No. 5, (2020), 877-888, DOI: 10.28991/cej-2020-03091514.

13.   Campardelli, R., Della, P. G., Gomez, V., Irusta, S., Reverchon, E., Santamaria, J. "Encapsulation of titanium dioxide nanoparticles in PLA microspheres using supercritical emulsion extraction to produce bactericidal nanocomposites", Journal of Nanoparticle Research, Vol. 15, No.10, (2013), 1987, DOI:10.1007/s11051-013-1987-5.

14.   Bian, H., Wei, L., Lin, C., Ma, Q., Dai, H., Zhu, J. "Lignin-containing cellulose nanofibril-reinforced polyvinyl alcohol hydrogels", ACS Sustainable Chemistry & Engineering, Vol. 6, No. 4, (2018), 4821-4828, DOI: 10.1021/acssuschemeng.7b04172

15.   Harahap, H., Nawansyah, R., Nasution, H., Iriany, T. "Isolationand Characterization of Nanocrystal from Corncob Waste Using H2SO4 Hydrolysis Method", International Journal of Engineering, Transactions A: Basics, Vol. 31 No. 4, (2017), 533-537, DOI: 10.5829/ije.2018.31.04a.03.

16.   Trifol, J., Plackett, D., Sillard, C., Hassager, O., Daugaard, A. E., Bras, J., Szabo, P. "A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high‐performance polylactide nanocomposites", Journal of Applied Polymer Science, Vol. 133, No. 14, (2016), 43257-43268, DOI:10.1002/app.43257.

17.   Rezaeigolestani, M., Misaghi, A., Khanjari, A., Basti, A. A., Abdulkhani, A., Fayazfar, S. "Antimicrobial evaluation of novel poly-lactic acid based nanocomposites incorporated with bioactive compounds in-vitro and in refrigerated vacuum-packed cooked sausages", International Journal of Food Microbiology, Vol. 260, (2017), 1-10, DOI: 10.1016/j.ijfoodmicro.2017.08.006.

18.   Jonoobi, M., Harun, J., Mathew, A. P., Oksman, K. "Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion", Composites Science and Technology, Vol. 70, No.12, (2010), 1742-1747, DOI: 10.1016/j.compscitech.2010.07.005.

19.   Arrieta, M. P., Fortunati, E., Dominici, F., López, J., Kenny, J. M. "Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends", Carbohydrate Polymers, Vol. 121, (2015), 265-275, DOI:10.1016/j.carbpol.2014.12.056

20.   Frone, A. N., Berlioz, S., Chailan, J. F., Panaitescu, D. M. "Morphology and thermal properties of PLA–cellulose nanofibers composites", Carbohydrate Polymers, Vol. 91, No. 1, (2013), 377-384, DOI:10.1016/j.carbpol.2012.08.054.

21.   Polat, S., Fenercioglu, H., Unal Turhan, E., Guclu, M. "Effects of nanoparticle ratio on structural, migration properties of polypropylene films and preservation quality of lemon juice", Journal of Food Processing and Preservation, Vol. 42, No.4, (2018), 13541, DOI.org/10.1111/jfpp.13541.

22.   Kechek’yan, P., Bazhenov, S., Kechek’yan, A. "The Influence of Biaxial Orientation on the Mechanical Properties of Polyethylene Filled with ZnO Nanoparticles", Polymer Science, Series A, Vol. 60, No. 3, (2018), 373-380, DOI: 10.1134/S0965545X18030057.

23.   Kumari, G. V., Mathavan, T., Srinivasan, R., Jothirajan, M. "The influence of physical properties on the antibacterial activity of lysine conjugated chitosan functionalized silver nanoparticles", Journal of Inorganic and Organometallic Polymers and Materials, Vol. 28, No. 6, (2018), 2418-2426, DOI: 10.1007/s10904-018-0944-2.

24.   Augustine, R., Augustine, A., Kalarikkal, N., Thomas, S. "Fabrication and characterization of biosilver nanoparticles loaded calcium pectinate nano-micro dual-porous antibacterial wound dressings", Progress in Biomaterials, Vol. 5, No. 3-4, (2016), 223-235, DOI: 10.1007/s40204-016-0060-8.

25.   Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho-Bragado, A., Gao, X., Lara, H. H., Yacaman, M. J. "Interaction of silver nanoparticles with HIV-1", Journal of Nanobiotechnology, Vol. 3, No. 1, (2005), 6-16, DOI:10.1186/1477-3155-3-6.

26.   Marimuthu, S., Rahuman, A. A., Rajakumar, G., Santhoshkumar, T., Kirthi, A. V., Jayaseelan, C., Bagavan, A., Zahir, A. A., Elango, G., Kamaraj, C. "Evaluation of green synthesized silver nanoparticles against parasites", Parasitology Research, Vol. 108 No. 6, (2011), 1541-1549, DOI: 10.1007/s00436-010-2212-4

27.   Panáček, A., Kolář, M., Večeřová, R., Prucek, R., Soukupova, J., Kryštof, V., Hamal, P., Zbořil, R., Kvítek, L. "Antifungal activity of silver nanoparticles against Candida spp", Biomaterials, Vol. 30, No.31, (2009), 6333-6340, DOI: 10.1016/j.biomaterials.2009.07.065.

28.   Manikandan, G., Yuvashree, M., Sangeetha, A., Bhuvana, K.P., Sanjay, K. "Liver Tissue Regeneration using Nano Silver impregnated Sodium Alginate/PVA Composite Nanofibres", SciMedicine Journal, Vol. 2, No. 1, (2020), 16-21, DOI: 10.28991/SciMedJ-2020-0201-3

29.   Maróti, P., Kocsis, B., Ferencz, A., Nyitrai, M., Lőrinczy, D. "Differential thermal analysis of the antibacterial effect of PLA-based materials planned for 3D printing", Journal of Thermal Analysis and Calorimetry, Vol. 139, No. 1, (2020), 367-374, DOI:10.1007/s10973-019-08377-4.

30.   Gan, L., Geng, A., Jin, L., Zhong, Q., Wang, L., Xu, L., Mei, C. "Antibacterial nanocomposite based on carbon nanotubes–silver nanoparticles-co-doped polylactic acid", Polymer Bulletin, Vol. 77, No. 2, (2020), 793-804, DOI: 10.1007/s00289-019-02776-1.

31.   Fan, C., Cui, R., Lu, W., Chen, H., Yuan, M., Qin, Y. "Effect of high pressure treatment on properties and nano–Ag migration of PLA-based food packaging film", Polymer Testing, Vol. 76, (2019), 73-81, DOI:10.1016/j.polymertesting.2019.03.005.

32.   Abdulkhani, A., Hosseinzadeh, J., Ashori, A., Dadashi, S., Takzare, Z. "Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite", Polymer Testing, Vol. 35, (2014), 73-79, DOI: 10.1016/j.polymertesting.2014.03.002

33.   Jing, M., Che, J., Xu, S., Liu, Z., Fu, Q. "The effect of surface modification of glass fiber on the performance of poly (lactic acid) composites: Graphene oxide vs. silane coupling agents", Applied Surface Science, Vol. 435, (2018), 1046-1056, DOI:10.1016/j.apsusc.2017.11.134.

34.   Buzarovska, A. "PLA nanocomposites with functionalized TiO2 nanoparticles", Polymer-Plastics Technology and Engineering, Vol. 52, No. 3, (2013), 280-286, DOI: 10.1080/03602559.2012.751411.  

35.   Liu, C., Wong, H. M., Yeung, K. W. K., Tjong, S. C. "Novel electrospun polylactic acid nanocomposite fiber mats with hybrid graphene oxide and nanohydroxyapatite reinforcements having enhanced biocompatibility", Polymers, Vol. 8, No. 8, (2016), 287, DOI:10.3390/polym8080287.

36.   Mukherjee, T., Sani, M., Kao, N., Gupta, R. K., Quazi, N., Bhattacharya, S. "Improved dispersion of cellulose microcrystals in polylactic acid (PLA) based composites applying surface acetylation", Chemical Engineering Science, Vol. 101, (2013), 655-662, DOI:10.1016/j.ces.2013.07.032.

37.   Tsou, C.H., Yao, W.H., Lu, Y.C., Tsou, C.Y., Wu,   C.S., Chen, J., Wang, R.Y., Su, C., Hung, W.S., De Guzman, M. "Antibacterial Property and Cytotoxicity of a Poly (lactic acid)/Nanosilver-Doped Multiwall Carbon Nanotube Nanocomposite", Polymers, Vol. 9, (2017), 100-111, DOI: 10.3390/polym9030100.