Numerical modeling and Optimization of Respirational Emergency Drug Delivery Device using Computational Fluid Dynamics and Response Surface Method

Document Type : Original Article

Authors

1 Department of Mechanical Engineering, Faculty of Engineering, Arak University, Arak, Iran

2 School of Engineering, RMIT University, Melbourne, Australia

3 Mechanical Engineering Faculty, Arak University of Technology, Arak, Iran

Abstract

Studies have shown that most of the particles sprayed on emergency respirational patients, accumulate inside the endotracheal tube and its connector. In this paper, applying Computational Fluid Dynamics (CFD) and Response Surface Method (RSM), an optimized geometry is introduced for higher efficiency of the drug delivery for patients with emergency respiratory diseases. In CFD modeling, finite volume method and for two-phase flow modeling, Lagrangian method is used. Reynolds averaged Navier–Stokes equations with Reynolds stress turbulence model are solved using SIMPLE pressure correction algorithm within the computational domain. The velocity fluctuations are simulated using the Discrete Random Walk (DRW). For optimization process, six different parameters including three dimensions of the connector of the tube: connector length, connector diameter and injection diameter, injection velocity of the drug particles, air flow velocity and particle size are investigated. Using Design of Experiments (DOE) and RSM, the output efficiency of the model and second-order regression equation model are derived and accuracy of the model is confirmed. Then the effect of each input parameter on the efficiency is investigated. Dringer algorithm is applied to optimize the process and the best combination of input parameters yielding the highest efficiency is introduced.

Keywords


1.     Broeders, M.E., Sanchis, J., Levy, M.L., Crompton, G.K. and Dekhuijzen, P.R., "The admit series—issues in inhalation therapy. 2) improving technique and clinical effectiveness", Primary Care Respiratory Journal,  Vol. 18, No. 2, (2009), 76-82. DOI: 10.4104/pcrj.2009.00025.
2.     Smola, M., Vandamme, T. and Sokolowski, A., "Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases", International Journal of Nanomedicine,  Vol. 3, No. 1, (2008), 1. doi.org/10.2147/IJN.S1045.
3.     Virchow, J., Crompton, G., Dal Negro, R., Pedersen, S., Magnan, A., Seidenberg, J. and Barnes, P., "Importance of inhaler devices in the management of airway disease", Respiratory medicine,  Vol. 102, No. 1, (2008), 10-19.DOI: 10.1016/j.rmed.2007.07.031.
4.     Chrystyn, H. and Price, D., "Not all asthma inhalers are the same: Factors to consider when prescribing an inhaler", Primary Care Respiratory Journal,  Vol. 18, No. 4, (2009), 243-249.doi: 10.4104/pcrj.2009.00029
5.     Khilnani, G. and Banga, A., "Aerosol therapy", Journal, Indian Academy of Clinical Medicine,  Vol. 5, (2004), 114-123.doi: 10.1186/s13054-016-1448-5.
6.     Vincken, W., Dekhuijzen, R. and Barnes, P., "The admit series—issues in inhalation therapy. 4) how to choose inhaler devices for the treatment of copd", Primary Care Respiratory Journal,  Vol. 19, No. 1, (2010), 10-20.doi: 10.4104/pcrj.2009.00062.
7.     Haughney, J., Price, D., Barnes, N.C., Virchow, J.C., Roche, N. and Chrystyn, H., "Choosing inhaler devices for people with asthma: Current knowledge and outstanding research needs", Respiratory Medicine CME,  Vol. 3, No. 3, (2010), 125-131. doi:10.1016/j.rmedc.2010.10.004.
8.     Price, D., Roche, N., Virchow, J.C., Burden, A., Ali, M., Chisholm, A., Lee, A.J., Hillyer, E.V. and von Ziegenweidt, J., "Device type and real-world effectiveness of asthma combination therapy: An observational study", Respiratory Medicine,  Vol. 105, No. 10, (2011), 1457-1466. doi:10.1016/j.rmed.2011.04.010.
9.     Dhand, R., "Special problems in aerosol delivery: Artificial airways", Respiratory Care,  Vol. 45, No. 6, (2000), 636-645.
10.   Mazela, J., Moskal, A., Sosonowski, T. and Gadzinowski, J., "Relation between neonatal endotracheal (et) tube size and aerosol penetration-computational fluid dynamic study (cfd)", Pediatric Research,  Vol. 70, No. 5, (2011), 531-531.DOI: 10.1038/pr.2011.756.
11.   Ahrens, R.C., Ries, R.A., Popendorf, W. and Wiese, J.A., "The delivery of therapeutic aerosols through endotracheal tubes", Pediatric Pulmonology,  Vol. 2, No. 1, (1986), 19-26. doi.org/10.1002/ppul.1950020108.
12.   O'riordan, T.G., Greco, M.J., Perry, R.J. and Smaldone, G.C., "Nebulizer function during mechanical ventilation1-3", Am Rev Respir Dis,  Vol. 145, (1992), 1117-1122.DOI: 10.1164/ajrccm/145.5.1117.
13.   Fuller, H., Dolovich, M., Posmituck, G., Wong Pack, W. and Newhouse, M., "Pressurized aerosol versus jet aerosol delivery to mechanically ventilated patients", Am Rev Respir Dis,  Vol. 141, No. 2, (1990), 440-444. DOI: 10.1164/ajrccm/141.2.440.
14.   Yousefi, M., "Cfd analysis of spacer and metered dose inhaler functionality and efficiency",  (2017).
15.   Yousefi, M., Pourmehran, O., Gorji-Bandpy, M., Inthavong, K., Yeo, L. and Tu, J., "Cfd simulation of aerosol delivery to a human lung via surface acoustic wave nebulization", Biomechanics and Modeling in Mechanobiology,  Vol. 16, No. 6, (2017), 2035-2050.DOI: 10.1007/s10237-017-0936-0.
16.   Yousefi, M., Inthavong, K. and Tu, J., "Effect of pressurized metered dose inhaler spray characteristics and particle size distribution on drug delivery efficiency", Journal of Aerosol Medicine and Pulmonary Drug Delivery,  Vol. 30, No. 5, (2017), 359-372. doi.org/10.1089/jamp.2016.1299.
17.   Longest, P.W., Golshahi, L. and Hindle, M., "Improving pharmaceutical aerosol delivery during noninvasive ventilation: Effects of streamlined components", Annals of Biomedical Engineering,  Vol. 41, No. 6, (2013), 1217-1232.DOI: 10.1007/s10439-013-0759-9
18.   Everard, M.L., Stammers, J., Hardy, J. and Milner, A., "New aerosol delivery system for neonatal ventilator circuits", Archives of Disease in Childhood,  Vol. 67, No. 7 Spec No, (1992), 826-830.doi: 10.1136/adc.67.7_spec_no.826.
19.   Ivri E, a.F.J., "Aerosol delivery apparatus and method for pressure-assisted breathing systems", United States Patent,  (2007).
20.   Mazela, J., Chmura, K., Kulza, M., Henderson, C., Gregory, T.J., Moskal, A., Sosnowski, T.R., Florek, E., Kramer, L. and Keszler, M., "Aerosolized albuterol sulfate delivery under neonatal ventilatory conditions: In vitro evaluation of a novel ventilator circuit patient interface connector", Journal of Aerosol Medicine and Pulmonary Drug Delivery,  Vol. 27, No. 1, (2014), 58-65.DOI: 10.1089/jamp.2012.0992.
21.   Longest, P.W., Azimi, M., Golshahi, L. and Hindle, M., "Improving aerosol drug delivery during invasive mechanical ventilation with redesigned components", Respiratory Care,  Vol. 59, No. 5, (2014), 686-698.DOI: 10.4187/respcare.02782
22.   A. Abdi, A.M.F.-F., M. Hajiaghaei-Keshteli, "A set of calibrated metaheuristics to address a closed-loop supply chain network design problem under uncertainty", International Journal of Systems Science: Operations & Logistics,  No. 1-18.DOI: 10.1007/s00500-020-04812-z.
23.   A. M. Fathollahi-Fard, K.G., M. Hajiaghaei-Keshteli, A. Ahmadi, "A green home health care supply chain: New modified simulated annealing algorithms", Journal of Cleaner Production,  (2019), 240, 118200.DOI: 10.1007/s11356-020-10175-7. 
24.   A. M. Nezhadroshan, A.M.F.-F., Mostafa Hajiaghaei-Keshteli, "A scenario-based possibilistic-stochastic programming approach to address the resilient humanitarian logistics considering travel time and resilience levels of facilities", International Journal of Systems Science: Operations & Logistics, (2020).DOI: 10.3390/app9183770.
25.   M. Eftekhari, M.A., M. Gheibi, H. Azizi-Toupkanloo, A. Mohammad Fathollahi-Fard, G, "Tian, cadmium and copper heavy metal treatment from water resources by high-performance folic acid-graphene oxide nanocomposite adsorbent and evaluation of adsorptive mechanism using computational intelligence, isotherm, kinetic, and thermodynamic analyses", Environ Sci Pollut Res Int,  (2020).DOI: 10.3233/JIFS-182843.
26.   M. M. Fathollahi-Fard, M.H.-K.R.T.-M., "Red deer algorithm (rda): A new nature-inspired meta-heuristic", Soft Computing,  No. 24, (2020), 14637–14665. DOI: 10.1080/23302674.2019.1610197.
27.   S. Bahadori-Chinibelagh, A.M.F.-F., M. Hajiaghaei-Keshteli, "Two constructive algorithms to address a multi-depot home healthcare routing problem", IETE Journal of Research,  (2019). DOI: 10.1080/03772063.2019.1642802.
28.   S. Mojgana, A.M.F.-F., T. Guangdong, L. Zhiwue, "A multi-objective supplier selection and order allocation through incremental discount in a fuzzy environment",  Vol. 37, No. 1, (Journal of Intelligent & Fuzzy Systems), 1435-1455. DOI: 10.1016/j.jclepro.2019.118200.
29.   Y. Feng, Z.Z., G. Tian, A. M. Fathollahi-Fard, N. Hao, Z. Li, W. Wang and J. Tan, " A novel hybrid fuzzy grey topsis method: Supplier evaluation of a collaborative manufacturing enterprise", Applied Sciences,  No. 9, (2018). doi.org/10.1080/23302674.2020.1769766.
30.   Crowe, C.T., Schwarzkopf, J.D., Sommerfeld, M. and Tsuji, Y., "Multiphase flows with droplets and particles, CRC press,  (2011).
31.   Ounis, H., Ahmadi, G. and McLaughlin, J.B., "Brownian diffusion of submicrometer particles in the viscous sublayer", Journal of Colloid and Interface Science,  Vol. 143, No. 1, (1991), 266-277. https://doi.org/10.1016/0021-9797(91)90458-K.
32.   Wen, D., Zhang, L. and He, Y., "Flow and migration of nanoparticle in a single channel", Heat and Mass Transfer,  Vol. 45, No. 8, (2009), 1061-1067.DOI: 10.1007/s00231-009-0479-8.
33.   Morsi, S. and Alexander, A., "An investigation of particle trajectories in two-phase flow systems", Journal of Fluid Mechanics,  Vol. 55, No. 2, (1972), 193-208.https://doi.org/10.1017/S0022112072001806.
34.   Pui, D.Y., Romay-Novas, F. and Liu, B.Y., "Experimental study of particle deposition in bends of circular cross section", Aerosol Science and Technology,  Vol. 7, No. 3,(1987),301-315.https://doi.org/10.1080/02786828708959166.
35.   T. H. Hou, C.-H.S., W.-L. Liu, , Powder technology, "Parameters optimization of a nano-particle wet milling process using the taguchi method, response surface method and genetic algorithm",  Vol. 173, (2007), 153-162. https://doi.org/10.1016/j.powtec.2006.11.019.
36.   Montgomery, D.C., " Design and analysis of experiments", John Wiley & Sons,  (2008).
37.   Nekahi, A. and Dehghani, K., "Modeling the thermomechanical effects on baking behavior of low carbon steels using response surface methodology", Materials & Design,  Vol. 31, No. 8, (2010), 3845-3851. https://doi.org/10.1016/j.matdes.2010.03.038.
38.   Moradi, M., Ghoreishi, M., Frostevarg, J. and Kaplan, A.F., "An investigation on stability of laser hybrid arc welding", Optics and Lasers in Engineering,  Vol. 51, No. 4, (2013),481-487.https://doi.org/10.1016/j.optlaseng.2012.10.016.
39.   Moradi, M., Ghoreishi, M. and Torkamany, M., "Modelling and optimization of nd: Yag laser and tungsten inert gas (TIG) hybrid welding of stainless steel", Lasers in Engineering (Old City Publishing),  Vol. 27, (2014).