Employing the Empirical Mode Decomposition to Denoise the Random Telegraph Noise

Document Type : Original Article


School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran


Random Telegraph Noise (RTN) is a stochastic phenomenon which leads to characteristic variations in electronic devices. Finding features of this signal may result in its modeling and eventually removing the noise in the device. Measuring this signal is accompanied by some noise and therefore we require a method to improve the Signal to Noise Ratio (SNR). As a result, the extraction of an accurate RTN is a remarkable challenge. Empirical Mode Decomposition (EMD) as a fully adaptive and signal dependent method, with no dependency to the specific function, can be an appropriate solution. In this paper, we evaluate the most recent methods and compare them with our proposed approach for the artificial and actual RTN signals. The results show the higher accuracy and efficiency by about 54%, 61% and 39% improvement in SNR, Mean Square Error (MSE) and Percent Root mean square Difference (PRD) respectively for the optimized wited method. Finally, an indicator to evaluate the reliability in digital circuits is introduced.


1.     Connelly, J. A., Low-Noise Electronic System Design, Guide Books, (1993), John Wiley & Sons, Inc.
2.     Li, Z., Sui, N., and Wang, G., "Experimental study on vibration and noise of pure electric vehicle (PEV) drive system", International Conference on Electric Information and Control Engineering, ICEICE 2011 - Proceedings, (2011), 5914–5917. doi:10.1109/ICEICE.2011.5776874
3.     Roshanian, J., Khaksari, H., Khoshnood, A. M., and Hasani, S. M., "Active Noise Cancellation using Online Wavelet Based Control System: Numerical and Experimental Study", International Journal of Engineering, Transactions A: Basics, Vol. 30, No. 1, (2017), 120–126. doi:10.5829/idosi.ije.2017.30.01a.15
4.     Grasser, T., Rott, K., Reisinger, H., Waltl, M., Franco, J., and Kaczer, B., "A unified perspective of RTN and BTI", IEEE International Reliability Physics Symposium Proceedings, (2014), IEEE. doi:10.1109/IRPS.2014.6860643
5.     Valinataj, M., "Reliability and Performance Evaluation of Fault-aware Routing Methods for Network-on-Chip Architectures", International Journal of Engineering, Transactions A: Basics, Vol. 27, No. 4, (2014), 509–516. doi:10.5829/idosi.ije.2014.27.04a.01
6.     Karatsori, T. A., Pastorek, M., Theodorou, C. G., Fadjie, A., Wichmann, N., Desplanque, L., Wallart, X., Bollaert, S., Dimitriadis, C. A., and Ghibaudo, G., "Static and low frequency noise characterization of ultra-thin body InAs MOSFETs", Solid-State Electronics, Vol. 143, (2018), 56–61. doi:10.1016/j.sse.2017.12.001
7.     Stampfer, B., Zhang, F., Illarionov, Y. Y., Knobloch, T., Wu, P., Waltl, M., Grill, A., Appenzeller, J., and Grasser, T., "Characterization of Single Defects in Ultrascaled MoS2 Field-Effect Transistors", ACS Nano, Vol. 12, No. 6, (2018), 5368–5375. doi:10.1021/acsnano.8b00268
8.     Waltl, M., Wagner, P. J., Reisinger, H., Rott, K., and Grasser, T., "Advanced data analysis algorithms for the time-dependent defect spectroscopy of NBTI", IEEE International Integrated Reliability Workshop Final Report, (2012), 74–79, 74–79. doi:10.1109/IIRW.2012.6468924
9.     Jech, M., Ullmann, B., Rzepa, G., Tyaginov, S., Grill, A., Waltl, M., Jabs, D., Jungemann, C., and Grasser, T., "Impact of Mixed Negative Bias Temperature Instability and Hot Carrier Stress on MOSFET Characteristics - Part II: Theory", IEEE Transactions on Electron Devices, Vol. 66, No. 1, (2019), 241–248. doi:10.1109/TED.2018.2873421
10.   Lai, Y., Li, H., Kim, D. K., Diroll, B. T., Murray, C. B., and Kagan, C. R., "Low-frequency (1/ f) noise in nanocrystal field-effect transistors", ACS Nano, Vol. 8, No. 9, (2014), 9664–9672. doi:10.1021/nn504303b
11.   Ullmann, B., Jech, M., Puschkarsky, K., Rott, G. A., Waltl, M., Illarionov, Y., Reisinger, H., and Grasser, T., "Impact of Mixed Negative Bias Temperature Instability and Hot Carrier Stress on MOSFET Characteristics - Part I: Experimental", IEEE Transactions on Electron Devices, Vol. 66, No. 1, (2019), 232–240. doi:10.1109/TED.2018.2873419
12.   Feng, W., Dou, C. M., Niwa, M., Yamada, K., and Ohmori, K., "Impact of random telegraph noise profiles on drain-current fluctuation during dynamic gate bias", IEEE Electron Device Letters, Vol. 35, No. 1, (2014), 3–5. doi:10.1109/LED.2013.2288981
13.   Matsumoto, T., Kobayashi, K., and Onodera, H., "Impact of random telegraph noise on CMOS logic delay uncertainty under low voltage operation", Technical Digest - International Electron Devices Meeting, IEDM, (2012). doi:10.1109/IEDM.2012.6479104
14.   Matsumoto, T., Kobayashi, K., and Onodera, H., "Impact of random telegraph noise on CMOS logic circuit reliability", Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, CICC 2014, (2014), Institute of Electrical and Electronics Engineers Inc. doi:10.1109/CICC.2014.6945997
15.   Compagnoni, C. M., Ghidotti, M., Lacaita, A. L., Spinelli, A. S., and Visconti, A., "Random telegraph noise effect on the programmed threshold-voltage distribution of flash memories", IEEE Electron Device Letters, Vol. 30, No. 9, (2009), 984–986. doi:10.1109/LED.2009.2026658
16.   Compagnoni, C. M., Spinelli, A. S., Beltrami, S., Bonanomi, M., and Visconti, A., "Cycling effect on the random telegraph noise instabilities of NOR and NAND flash arrays", IEEE Electron Device Letters, Vol. 29, No. 8, (2008), 941–943. doi:10.1109/LED.2008.2000964
17.   Veksler, D., Bersuker, G., Vandelli, L., Padovani, A., Larcher, L., Muraviev, A., Chakrabarti, B., Vogel, E., Gilmer, D. C., and Kirsch, P. D., "Random telegraph noise (RTN) in scaled RRAM devices", IEEE International Reliability Physics Symposium Proceedings, (2013). doi:10.1109/IRPS.2013.6532101
18.   Ling, Y. T., Wang, Z. W., Fang, Y. C., Kang, J., Wu, L. D., Yang, Y. C., Cai, Y. M., and Huang, R., "RTN impacts on RRAM-based Nonvolatile logic circuit", 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology, ICSICT 2018 - Proceedings, (2018), Institute of Electrical and Electronics Engineers Inc. doi:10.1109/ICSICT.2018.8565665
19.   Imamoto, T., Ma, Y., Muraguchi, M., and Endoh, T., "Low-frequency noise reduction in vertical MOSFETs having tunable threshold voltage fabricated with 60nm CMOS technology on 300mm wafer process", Japanese Journal of Applied Physics, Vol. 54, No. 4, (2015). doi:10.7567/JJAP.54.04DC11
20.   L. Forbes and D.A. Miller. Reduction of random telegraph signal (RTS) and 1/f noise in silicon MOS devices, circuits, and sensors. U.S. Patent 8,513,102, (2013).
21.   Chen, X., Chen, S., Hu, Q., Zhang, S. L., Solomon, P., and Zhang, Z., "Device noise reduction for silicon nanowire field-effect-Transistor based sensors by using a schottky junction gate", ACS Sensors, Vol. 4, No. 2, (2019), 427–433. doi:10.1021/acssensors.8b01394
22.   Ioannidis, E. G., Leisenberger, F. P., and Enichlmair, H., "Low frequency noise investigation of n-MOSFET single cells for memory applications", Solid-State Electronics, Vol. 151, (2019), 36–39. doi:10.1016/j.sse.2018.10.016
23.   Pirro, L., Zimmerhackl, O., Zaka, A., Miiller-Meskamp, L., Nelluri, R., Hermann, T., Cortes-Mayol, I., Huschka, A., Otto, M., Nowak, E., Mittal, A., and Hoentschel, J., "RTN and LFN noise performance in advanced FDSOI technology", European Solid-State Device Research Conference, Vols 2018-September, (2018), 254–257. doi:10.1109/ESSDERC.2018.8486917
24.   Islam, A. K. M. M., Oka, M., and Onodera, H., "Measurement of temperature effect on random telegraph noise induced delay fluctuation", IEEE International Conference on Microelectronic Test Structures, Vols 2018-March, (2018), 210–215, Institute of Electrical and Electronics Engineers Inc., 210–215. doi:10.1109/ICMTS.2018.8383801
25.   Seo, Y., Woo, C., Lee, M., Kang, M., Jeon, J., and Shin, H., "Improving BSIM Flicker Noise Model", 2019 Electron Devices Technology and Manufacturing Conference, EDTM 2019, (2019), 32–34. doi:10.1109/EDTM.2019.8731123
26.   Kushwaha, P., Agarwal, H., Lin, Y. K., Dasgupta, A., Kao, M. Y., Lu, Y., Yue, Y., Chen, X., Wang, J., Sy, W., Yang, F., Chidambaram, P. R. C., Salahuddin, S., and Hu, C., "Characterization and Modeling of Flicker Noise in FinFETs at Advanced Technology Node", IEEE Electron Device Letters, Vol. 40, No. 6, (2019), 985–988. doi:10.1109/LED.2019.2911614
27.   Tanaka, C., Adachi, K., Nakayama, A., Iguchi, Y., and Yoshitomi, S., "Experimental extraction of body bias dependence of low frequency noise in sub-micron MOSFETs from subthreshold to moderate inversion regime", IEEE International Conference on Microelectronic Test Structures, Vol. 2019, (2019), 162–165. doi:10.1109/ICMTS.2019.8730953
28.   Gokcen, A., and Demir, M. A., "Nonstationary Low Frequency Noise in Switched MOSFET Circuits & Circuit Simulation", 25th International Conference on Noise and Fluctuations (ICNF 2019), (2019).
29.   Mohanty, A., Sutaria, K. B., Awano, H., Sato, T., and Cao, Y., "RTN in Scaled Transistors for On-Chip Random Seed Generation", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 25, No. 8, (2017), 2248–2257. doi:10.1109/TVLSI.2017.2687762
30.   Diaz-Fortuny, J., Martin-Martinez, J., Rodriguez, R., Nafria, M., Castro-Lopez, R., Roca, E., and Fernandez, F. V., "A noise and RTN-removal smart method for parameters extraction of CMOS aging compact models", 2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon, EUROSOI-ULIS 2018, Vol. 2018, (2018), 1–4. doi:10.1109/ULIS.2018.8354740
31.   Diaz-Fortuny, J., Martin-Martinez, J., Rodriguez, R., Castro-Lopez, R., Roca, E., Fernandez, F. V., and Nafria, M., "A smart noise- and RTN-removal method for parameter extraction of CMOS aging compact models", Solid-State Electronics, Vol. 159, (2019), 99–105. doi:10.1016/j.sse.2019.03.045
32.   Gao, L., Alibart, F., and Strukov, D. B., "Analog-input analog-weight dot-product operation with Ag/a-Si/Pt memristive devices", IEEE/IFIP International Conference on VLSI and System-on-Chip, VLSI-SoC, (2015), 88–93. doi:10.1109/VLSI-SoC.2012.7332082
33.   Vaseghi, S. V., Advanced Digital Signal Processing and Noise Reduction, (2008) John Wiley & Sons.
34.   Petrychuk, M., Zadorozhnyi, I., Kutovyi, Y., Karg, S., Riel, H., and Vitusevich, S., "Noise spectroscopy to study the 1D electron transport properties in InAs nanowires", Nanotechnology, Vol. 30, No. 30, (2019), 305001. doi:10.1088/1361-6528/ab175e
35.   Higashi, Y., Momo, N., Momose, H. S., Ohguro, T., and Matsuzawa, K., "Comprehensive understanding of random telegraph noise with", 2011 Symposium on VLSI Technology - Digest of Technical Papers, (2011), 200–201.
36.   Tega, N., Miki, H., Yamaoka, M., Kume, H., Mine, T., Ishida, T., Mori, Y., Yamada, R., and Torii, K., "Impact of threshold voltage fluctuation due to random telegraph noise on scaled-down SRAM", IEEE International Reliability Physics Symposium Proceedings, (2008), 541–546. doi:10.1109/RELPHY.2008.4558943
37.   Du, L., Zhuang, Y., and Wu, Y., "1/fγ noise separated from white noise with wavelet denoising", Microelectronics Reliability, Vol. 42, No. 2, (2002), 183–188. doi:10.1016/S0026-2714(01)00249-9
38.   Principato, F., and Ferrante, G., "1 / f Noise decomposition in random telegraph signals using the wavelet transform", Physica A: Statistical Mechanics and Its Applications, Vol. 380, Nos. 1–2, (2007), 75–97. doi:10.1016/j.physa.2007.02.111
39.   Hendrickson, B., Widenhorn, R., and Blouke, M., "Using Wavelets to Remove Unwanted Noise from RTS Signals", Bulletin of the American Physical Society, Vol. 62, No. 7, (2017).
40.   Huang, N. E., "Hilbert-Huang transform and its applications", (Vol. 16), World Scientific, (2014).
41.   Hari Krishna, E., Sivani, K., and Ashoka Reddy, K., "Empirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation", International Journal of Engineering, Transactions A: Basics, Vol. 30, No. 10, (2017), 1517–1525. doi:10.5829/ije.2017.30.10a.13
42.   Seifolazadeh, A., and Edrissi, M., "determination of the rheological properties of hydroxyl terminated polybutadiene (htpb) mixtures with energetic materials and presenting empricial models", International Journal OF Engineering, Vol. 18, No. 4, (2005), 413–420.
43.   Wang, F., and Fang, L., "A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition", International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 7, (2019), 1010–1016. doi:10.5829/ije.2019.32.07a.14
44.   Grasser, T., "Stochastic charge trapping in oxides: From random telegraph noise to bias temperature instabilities", Microelectronics Reliability, Vol. 52, No. 1, (2012), 39–70, Pergamon, 39–70. doi:10.1016/j.microrel.2011.09.002