Reliability Analysis of Notched Plates under Anisotropic Damage Based on Uniaxial Loading Using Continuum Damage Mechanics Approach

Document Type : Original Article


1 Aerospace Engineering, Aerospace Research Institute (Ministry of Science, Research and Technology), Tehran, Iran

2 Aerospace Engineering, Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran


Extensive recent researches have been underway to model the fracture mechanics degradation based on continuum damage mechanics (CDM) technique. CDM theory is a powerful tool for solving problems such as large plastic deformations that the fracture mechanics is unable to solve. This model is derived by means of the thermodynamics internal variable theory and based on the experimental results on material properties. In this paper, the reliability of rectangular plates containing a central circular hole under static tensile load using the CDM approach for ductile fracture has been studied. To investigate the initiation and evolution of damages, anisotropic damage expressed by second order damage tensor is used to derive constitutive equations. Then, these relationships together with material constants are implemented with subroutine in ABAQUS software. The reliability assessment has been investigated using first order reliability method (FORM) and second order reliability method (SORM).  Based on the FORM and SORM, the limit state functions and random variables have been obtained according to the energy density release rate. The probability of failure of each plate with different hole sizes is estimated based on the anisotropic damage theory, and the results are compared with the isotropic damage model. Finally, the sensitivity analysis of the coefficient of variation is performed.


1.     Alijani, H., "Evaluation of ductile damage criteria in hot forming processes", International Journal of Engineering, Transactions A: Basics,  Vol. 29, No. 10, (2016), 1441-1449.
2.     Lou, Y. and Yoon, J.W., "Anisotropic ductile fracture criterion based on linear transformation", International Journal of Plasticity,  Vol. 93, (2017), 3-25, doi: 10.1016/j.ijplas.2017.04.008.
3.     Stormont, C., Gonzalez, H. and Brinson, H., "The ductile fracture of anisotropic materials", Experimental Mechanics,  Vol. 12, No. 12, (1972), 557-563, doi: 10.1007/BF02320599.
4.     Farrahi, G. and Mohajerani, A., "Numerical investigation of crack orientation in the fretting fatigue of a flat rounded contact", International Journal of Engineering, Transactions C: Aspects,  Vol. 23, No. 3, (2010), 223-232.
5.     Vossoughi Shahvari, F. and Kazemi, M., "Mixed mode fracture in reinforced concrete with low volume fraction of steel fibers", International Journal of Engineering, Transactions A: Basics,  Vol. 24, No. 1, (2011), 1-18, doi.
6.     Hassan Ghasemi, M., Mofid Nakhaei, A. and Dardel, M., "A simple method for modeling open cracked beam", International Journal of Engineering, Transactions B: Applications,  Vol. 28, No. 2, (2015), 321-329.
7.     Fallah, N., "A development in the finite volume method for the crack growth analysis without global remeshing", International Journal of Engineering, Transactions A: Basics,  Vol. 29, No. 7, (2016), 898-908.
8.     Zhang, H., Zhang, H., Li, F. and Cao, J., "A novel damage model to predict ductile fracture behavior for anisotropic sheet metal", Metals,  Vol. 9, No. 5, (2019), 595, doi: 10.3390/met9050595.
9.     Lou, Y., Chen, L., Clausmeyer, T., Tekkaya, A.E. and Yoon, J.W., "Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals", International Journal of Solids and Structures,  Vol. 112, (2017), 169-184, doi: 10.1016/j.ijsolstr.2016.11.034.
10.   Lou, Y.S. and Yoon, J.W., "Anisotropic behavior in plasticity and ductile fracture of an aluminum alloy", in Key Engineering Materials, Trans Tech Publications Vol. 651, (2015), 163-168, doi: 10.4028/
11.   Kachanov, L., "On creep rupture time", Izv. Acad. Nauk SSSR, Otd. Techn. Nauk,  Vol. 8, (1958), 26-31.
12.   Oucif, C., Voyiadjis, G.Z., Kattan, P.I. and Rabczuk, T., "Investigation of the super healing theory in continuum damage and healing mechanics", International Journal of Damage Mechanics,  Vol. 28, No. 6, (2019), 896-917, doi: 10.1177/1056789518799822.
13.   Voyiadjis, G.Z. and Kattan, P.I., "Fundamental aspects for characterization in continuum damage mechanics", International Journal of Damage Mechanics,  Vol. 28, No. 2, (2019), 200-218, doi: 10.1177/1056789517752524.
14.   Rabotnov, Y., On the equations of state for creep. Progress in applied mechanics. Prager anniversary vol. 1963, New York: Macmillan.
15.   Lemaitre, J., "How to use damage mechanics", Nuclear Engineering and Design,  Vol. 80, No. 2, (1984), 233-245.
16.   Saboori, B. and Moshrefzadeh-sani, H., "A continuum model for stone-wales defected carbon nanotubes", International Journal of Engineering, Transactions C: Aspects,  Vol. 28, No. 3, (2015), 433-439.
17.   Van Do, V.N., "The behavior of ductile damage model on steel structure failure", Procedia Engineering,  Vol. 142, (2016), 26-33, doi: 10.1016/j.proeng.2016.02.009.
18.   Majzoobi, G., Kashfi, M., Bonora, N., Iannitti, G., Ruggiero, A. and Khademi, E., "Damage characterization of aluminum 2024 thin sheet for different stress triaxialities", Archives of Civil and Mechanical Engineering,  Vol. 18, (2018), 702-712, doi: 10.1016/j.acme.2017.11.003.
19.   Razanica, S., Larsson, R. and Josefson, B., "A ductile fracture model based on continuum thermodynamics and damage", Mechanics of Materials,  Vol. 139, (2019), 103197, doi: 10.1016/j.mechmat.2019.103197.
20.   Bonora, N., Testa, G., Ruggiero, A., Iannitti, G. and Gentile, D., "Continuum damage mechanics modelling incorporating stress triaxiality effect on ductile damage initiation", Fatigue & Fracture of Engineering Materials & Structures, (2020), doi: 10.1111/ffe.13220.
21.   Ganjiani, M., "A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and lode angle", European Journal of Mechanics-A/Solids, (2020), 104048, doi: 10.1016/j.euromechsol.2020.104048.
22.   Krajcinovic, D., Damage mechanics, Elsevier,  (1996).
23.   Park, S.-J., Lee, K., Choung, J. and Walters, C.L., "Ductile fracture prediction of high tensile steel EH36 using new damage functions", Ships and Offshore Structures,  Vol. 13, No. sup1, (2018), 68-78, doi: 10.1080/17445302.2018.1426433.
24.   Keshavarz, A. and Ghajar, R., "Effect of isotropic and anisotropic damage and plasticity on ductile crack initiation", International Journal of Damage Mechanics,  Vol. 28, No. 6, (2019), 918-942, doi: 10.1177/1056789518802625.
25.   Kõrgesaar, M., "The effect of low stress triaxialities and deformation paths on ductile fracture simulations of large shell structures", Marine Structures,  Vol. 63, (2019), 45-64, doi: 10.1016/j.marstruc.2018.08.004.
26.   Shen, F., Muenstermann, S. and Lian, J., "Investigation on the ductile fracture of high-strength pipeline steels using a partial anisotropic damage mechanics model", Engineering Fracture Mechanics,  Vol. 227, (2020), 106900, doi: 10.1016/j.engfracmech.2020.106900.
27.   Surmiri, A., Nayebi, A. and Rokhgireh, H., "Application of anisotropic continuum damage mechanics in ratcheting characterization", Mechanics of Advanced Materials and Structures, (2020), 1-8, doi: 10.1080/15376494.2020.1751353.
28.   Modarres, M., Kaminskiy, M.P. and Krivtsov, V., Reliability engineering and risk analysis: A practical guide, CRC press,  (2016).
29.   Silva, J., Garbatov, Y. and Soares, C.G., "Reliability assessment of a steel plate subjected to distributed and localized corrosion wastage", Engineering Structures,  Vol. 59, (2014), 13-20, doi: 10.1016/j.engstruct.2013.10.018.
30.   Melchers, R.E. and Beck, A.T., Structural reliability analysis and prediction, John wiley & sons,  (2018).
31.   Murakami, S. and Ohno, N., A continuum theory of creep and creep damage, in Creep in structures. 1981, Springer.422-444.
32.   Lemaitre, J. and Desmorat, R., Engineering damage mechanics: Ductile, creep, fatigue and brittle failures, Springer Science & Business Media,  (2005).
33.   Benzerga, A., Besson, J. and Pineau, A., "Anisotropic ductile fracture: Part i: Experiments", Acta Materialia,  Vol. 52, No. 15, (2004), 4623-4638, doi: 10.1016/j.actamat.2004.06.020.
34.   Lemaitre, J., Desmorat, R. and Sauzay, M., "Anisotropic damage law of evolution", European Journal of Mechanics-A/Solids,  Vol. 19, No. 2, (2000), 187-208, doi: 10.1016/S0997-7538(00)00161-3.
35.   Bonora, N., "A nonlinear cdm model for ductile failure", Engineering Fracture Mechanics,  Vol. 58, No. 1-2, (1997), 11-28, doi: 10.1016/S0013-7944(97)00074-X.
36.   Haldar, A. and Mahadevan, S., Reliability assessment using stochastic finite element analysis, John Wiley & Sons,  (2000).
37.   Haldar, A. and Mahadevan, S., Probability, reliability, and statistical methods in engineering design, John Wiley,  (2000).
38.   Farsi, M.A. and Sehat, A.R., "Experimental and numerical study on aluminum damage using a nonlinear model of continuum damage mechanics", Journal of Applied and Computational Sciences in Mechanics,  Vol. 27, No. 2, (2016), 41-54, (in Persian).
39.          Farsi, M.A. and Sehat, A.R., "Comparison of nonlinear models for prediction of continuum damage in aluminum under different loading", Joural of Mechanical Engineering,  Vol. 46, No. 4, (2017), 211-220, (in Persian