A Generalization for Model Reference Adaptive Control and Robust Model Reference Adaptive Control Adaptive Laws for a Class of Nonlinear Uncertain Systems with Application to Control of Wing Rock Phenomenon

Document Type : Original Article


Department of Aerospace Engineering, K.N. Toosi University of Technology, Tehran, Iran


Lyapunov's direct method is a primary tool for designing Model Reference Adaptive Control (MRAC) and robust MRAC schemes. In general, Lyapunov function candidates contain two categories of quadratic terms. The first category includes the system tracking error quadratic terms or, in some cases, consist of the system state quadratic terms. The second consists of the parameter estimation error quadratic terms. To design MRAC and Robust MRAC systems, researchers have used a limited variety for choosing quadratic terms. In this study, we consider a general form for the tracking error quadratic terms. We consider a strictly increasing function that belongs to the class of c1, which is a function of state tracking error quadratic terms. It yields a general structure for stable adaptive laws for updating controller parameters. For the MRAC scheme, the global asymptotic stability of the closed-loop system and stability and uniform bounded tracking of robust MRAC schemes are guaranteed. To evaluate the performance of the designed controllers, we consider the single DOF wing rock dynamics.


1.     Gursul, I., Wang, Z., “Flow control of tip/edge vortices”,  AIAA Journal, Vol. 56, No. 5, (2018), 1731-1749, doi: 10.2514/1.J056586.
2.     Chen, K., Dong, Y., Shi, Z., Tong, S. X., & Sha, J., “Experimental Study of the Suppression of Wing-Body Rock by Spanwise Blowing” In 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering(2019), 142-146. Doi: 10.1109/ICMAE.2019.8880951.
3.     Katz, J., “Wing/vortex interactions and wing rock”, Progress in Aerospace Sciences, Vol. 35, No. 7, (1999), 727-750, doi: 10.1016/S0376-0421(99)00004-4.
4.     Ma, B. F., Wang, Z., Gursul, I. “Symmetry breaking and instabilities of conical vortex pairs over slender delta wings”, Journal of Fluid Mechanics, Vol. 832, (2017), 41-72, doi: 10.1017/jfm.2017.648.
5.     Ma, B., Deng, X.,  Wang, B., “Effects of wing locations on wing rock induced by forebody vortices”, Chinese Journal of Aeronautics, Vol. 29, No.5, (2016), 1226-1236, doi: 10.1016/j.cja.2016.08.004.
6.     Gursul, I., Xie, W., “Origin of vortex wandering over delta wings”,  Journal of Aircraft, Vol. 37, No. 2, (2000), 348-350, doi: 10.2514/2.2603.
7.     Ericsson, L. E., “Various sources of wing rock”, Journal of  Aircraft, Vol.27, No. 6, (1990), 488-494, Doi: 10.2514/3.25309.
8.     Jun, Y.W., Nelson, R.C., “Leading-edge vortex dynamics on a slender oscillating wing”, Journal of Aircraft, Vol. 25, No. 9, (1988), 815-819, doi: 10.2514/3.45664.
9.     Nguyen, L., Yip, L., Chambers, J., “Self-induced wing rock of slender delta wings”, In 7th Atmospheric Flight Mechanics Conference, (1981), 1883, doi: 10.2514/6.1981-1883.
10.   Ma, B. F., Wang, B., Deng, X. Y., “Effects of Reynolds numbers on wing rock induced by forebody vortices”,  AIAA Journal, Vol. 55, No. 9, (2017), 2980-2991, doi: 10.2514/1.J055461.
11.   Hsu, C. H.,  Lan, C. E., “Theory of wing rock”, Journal of Aircraft, Vol. 22, No. 10, (1985), 920-924, doi: 10.2514/3.45225.
12.   Nayfeh, A. H., Elzebda, J. M., Mook, D. T., “Analytical study of  the subsonic wing-rock phenomenon for slender delta wings”, Journal of Aircraft, Vol. 26, No. 9, (1989), 805-808, doi: 10.2514/3.45844.
13.   Elzebda, J. M., Nayfeh, A. H., Mook, D. T., “ Development of an analytical model of wing rock for slender delta wings”, Journal of Aircraft, Vol. 26, No. 8, (1989), 737-743, doi: 10.2514/3.45833.
14.   Go, T. H., “ Aircraft wing rock dynamics and control”, Doctoral Dissertation, Massachusetts Institute of Technology,(1999).
15.   Hsu, C. F., Lin, C. M., Chen, T. Y., “Neural-network-identification-based adaptive control of wing rock motions”,  IEE Proceedings-Control Theory and Applications, Vol. 152, No.1, (2005), 65-71, doi: 10.1049/ip-cta:20050904.
16.   Liu, Z. L., “Reinforcement adaptive fuzzy control of wing rock phenomena”, IEE Proceedings-Control Theory and Applications, Vol. 152,No. 6, (2005), 615-620, doi: 10.1049/ip-cta:20045072.
17.   Tao, C. W., Taur, J. S., Chang, C. W.,  Chang, Y. H., “Simplified type-2 fuzzy sliding controller for wing rock system”,  Fuzzy Sets and Systems, Vol. 207, (2012), 111-129, doi: 10.1016/j.fss.2012.02.015.
18.   Lin, C. M., Hsu, C. F, “Supervisory recurrent fuzzy  neural   network control of wing rock for slender delta wings”, IEEE Transactions on Fuzzy Systems, Vol. 12, No. 5, (2004), 733-742, doi: 10.1109/TFUZZ.2004.834803.
19.   Monahemi, M., Barlow, J., Krstic, M, “Control of wing rock motion of slender delta wings using adaptive feedback linearization”, In Guidance, Navigation, and Control Conference, (1995), 3344, doi: 10.2514/6.1995-3344.
20.   Araujo, A. D.,  Singh, S. N., “ Variable structure adaptive control of wing-rock motion of slender delta wings”, Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, (1998), 251-256, doi: 10.2514/2.4250.
21.   Arab Markadeh, G. R.,  Soltani, J., “A Current-Based Output Feedback Sliding Mode Control for Speed Sensorless Induction Machine Drive Using Adaptive Sliding Mode Flux Observer”, International Journal of Engineering, Transactions A: Basics, Vol. 19, No. 1, (2006), 21-34.
22.   Karami-Mollaee, A., “Adaptive Fuzzy Dynamic Sliding Mode Control of Nonlinear Systems”, International Journal of Engineering, Transactions B: Applications, Vol. 29, No. 8, (2016) 1075-1086, doi: 10.5829/idosi.ije.2016.29.08b.07.
23.   Sadeghijaleh, M., Fateh, M.M., “Adaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors”, International Journal of Engineering, Transactions A: Basics, Vol. 30, No. 4, (2017), 507-515, doi: 10.5829/idosi.ije.2017.30.04a.08.
24.   Malekzadeh, M., Shahbazi, B., “Robust Attitude Control of Spacecraft Simulator with External Disturbances”,  International Journal of Engineering, Transactions A: Basics, Vol. 30, No. 4, (2017), 567-574, doi: 10.5829/idosi.ije.2017.30.04a.15.
25.   Gholipour, R., Fateh, M. M., “Designing a Robust Control Scheme for Robotic Systems with an Adaptive Observer”, International Journal of Engineering, Transactions B: Applicatios, Vol. 32, No. 2, (2019), 284-291, doi: 10.5829/ije.2019.32.02b.12.
26.   Manouchehri, P., Ghasemi, R., Toloei, A., “Distributed Fuzzy Adaptive Sliding Mode Formation for Nonlinear Multi-quadrotor Systems” ,  International Journal of Engineering, Transactions B: Applications, Vol. 33, No. 5, (2020), 798-804, doi: 10.5829/IJE.2020.33.05B.11.
27.   Rao, M. P. R. V., “ Non-quadratic Lyapunov function and adaptive laws for model reference adaptive control”, Electronics Letters, Vol. 34, No. 23, (1998), 2278-2280, doi: 10.1049/el:19981503.
28.   Hassan, H. A., Rao, M. P. R. V., “Novel Robust Adaptive Control Scheme Using Non-Quadratic Lyapunov Functions For Higher Order Systems”, In EUROCON The International Conference on Computer as a Tool IEEE, (2005), Vol. 1, 286-289, doi: 10.1109/EURCON.2005.1629917
29.   Hosseinzadeh, M.,  Yazdanpanah, M. J., “Performance enhanced model reference adaptive control through switching non-quadratic Lyapunov functions”, Systems & Control Letters, Vol. 76, (2015), 47-55, doi: 10.1016/j.sysconle.2014.12.001.
30.   Lavretsky, E., Wise, K.A., “Robust and adaptive control, Springer, London, (2013), doi: 10.1007/978-1-4471-4396-3.