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A B S T R A C T  
 

 

This paper is an attempt to model the oxidation behavior of Ni-base alloys by considering the alloying 

elements, i.e., Cr, W, Mo, as variables. Modified particle swarm optimization-artificial neural network 

(MPSO-ANN) and gene expression programming (GEP) techniques were employed for modeling. 
Data set for construction of (MPSO-ANN) and GEP models selected from 66 cyclic oxidation 

performed in the temperature range of 400-1150 ᵒC for 27 different Ni-based alloy samples at various 

amounts of Cr, W, and Mo. The weight percent of alloying elements selected as input variables and the 
changes of weight during the oxidation cycle considered as output. To analyze the performance of 

proposed models, various statistical indices, viz. root mean squared error (RMSE) and the correlation 

coefficient between two data sets (R2) were utilized. The collected data of GEP randomly divided into 
21 training sets and 6 testing sets. The results confirmed that the possibility of oxidation behavior 

modeling using GEP by R2 = 0.981, RMSE =0.0822. By consideration of oxidation resistance as 

criteria, Cr, Mo, and W enhanced the oxidation resistance of Ni-based alloys. The results showed that 
in the presence of Cr as alloying element, especially at Cr contents higher than 22 wt.%, the effect of 

W and Mo were negligible. However, the same trend was reversed at the sample with Cr content lower 

than 20 wt.%. In these cases, the effect of W and Mo on oxidation resistance were significantly 
enhanced. 

doi: 10.5829/ije.2020.33.11b.23 
 

 
1. INTRODUCTION1 
 
Ni-based alloys have extensive usages as high-

temperature alloys due to relatively high resistance for 

the oxidation, e.g., structural materials for construction 

of the steam generator tubes and high-energy piping 

nozzles [1, 2]. Growing demand for new technologies 

enhanced the queries for advanced material with 

innovative properties, especially, high oxidation 

resistance, mechanical strength, and fabric ability. By 

consideration of these properties, alloys divided into the 

type with surface layer of Cr2O3 based scale for the 

oxidation behavior, and the type with Al2O3-based scale 
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layer for protection against environmental agent [3–6]. 

Haynes alloy 230 is one of the most convenient Ni-

based alloys with the surface layer of Cr2O3 based scale 

types. On the one hand, excellent high-temperature 

strength and on the other hand, acceptable 

environmental resistance has caused the evolution of 

Haynes 230 as a good candidate for application in high 

temperature components in aerospace as well as power 

industries [1]. According to literature, there would be 

endless queries for high-temperature structural alloys in 

the future, especially in power plants HR-120, HR-160 

and Haynes 230 alloys are the most commercial 

chromium–forming alloys. The cycle oxidation 
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resistance of these alloys is strongly dependent on the 

amount of alloying elements [7]. Specific characteristics 

of Haynes 230 alloys encourage the researchers to select 

as prime candidates for high-temperature usages. 

Accordingly, many studies have been designed for 

investigating the oxide scale formation as a function of 

operational temperature at different environmental 

conditions. For example, the presence of minor alloying 

elements in Hayens 230 significantly enhanced the 

oxidation resistance of alloys [4]. However, in some 

cases, some trend has been observed in binary alloys 

system at the presence of third alloying elements [4]. 

Investigating the literature revealed that the high-

temperature resistance under thermal cycling condition 

of Cr2O3 –forming alloys is strongly affected by the 

amount of Si content [8]. Investigating the influence of 

Cr, W, and Mo on the oxidation resistance of Ni – Cr – 

W – Mo alloys is the main objective of this study. W 

and Mo constituents can enhance the high-temperature 

strength of high temperature alloys through solid 

solution hardening. While the oxidation resistance of Fe 

and Ni-base alloys are affected by W and Mo in various 

mechanisms. Typically, the presence of a higher 

contents of refractory metals, e.g., Mo, W, Ta, Re, is 

necessary for higher creep strength of Ni-based alloys 

[5, 9]. 

In their research, Yun et al. [1] proposed that 

accumulation of metallic Mo at the interface of oxide –

metal and Mo6+ in Fe -24 wt.%. Cr -11 wt%. Mo-alloy 

has a high potential for the oxidation at 700 K and 

consequently enhanced the oxidation resistance. Similar 

observations have been reported about the positive 

effect of Cr and Al content in Ni-Co –Cr –Al –W –Mo –

Ta –Re –Ru during the oxidation at 1100 ◦C and to the 

formation of a protective layer as NiAl2O4 [9]. In other 

researches, it has been shown that W and Mo cause 

volatile species as oxide phase to form and prevent the 

formation of fresh protective Cr2O3 layer after the 

spallation of oxide scale, and consequently there is not 

any linear relation between the amount of alloying 

elements and the oxidation behavior in the multi-

component system [1]. Advances in computer hardware 

have made soft computing techniques more efficient. In 

addition, soft computing techniques may be used to 

model problems where the conventional approaches, 

such as regression analysis, fail or perform poorly [10]. 

Artificial neural networks, fuzzy logic, adaptive neuro-

fuzzy interfacial, and GP are the most common soft 

computing techniques [11]. Use of AI techniques such 

as artificial neural networks (ANN) and gene expression 

programming (GEP) are popular in various fields of 

mathematics, engineering, medicine, economics, 

meteorology, and psychology are attracting interest in 

recent years [12]. ANN method provides a novel 

approach to predict the deformation behavior of 

materials under different conditions. ANN is an 

artificial intelligence technology to simulate biological 

processes of the human brain [13, 14]. This system 

comprises operators interconnected via one-way signal 

flow channels. It collects the samples with a distributed 

coding which forms a trainable non-linear system. It is 

also self-adaptive to the environment to respond to the 

different inputs rationally [15]. Although ANNs 

typically build ‘‘black box’’ models, explicit formulas 

can be derived for a trained ANN model. A derivative-

free optimization algorithm should be added to the 

training process of the ANN algorithm to avoid local 

minima, which leads to false convergence of the ANN 

model [10]. There are many papers on the applications 

of GEP in the literature for different engineering 

problems [11]. GEP is newer than the GP approach. GA 

by employment of genetic variation and operators 

selects the best individuals [12]. A combination of 

regression strategies and systematic design of the 

experiment is an efficient alternative approach for 

providing the experimental data in a new popularity 

model approach such as Gene expression programming. 

ANN and GEP can capture complex interactions among 

input/ output variables in a system without using prior 

knowledge about the nature of these interactions. To the 

best of our knowledge, there are some reports about the 

usage of two different AI applications: ANN and GEP 

together to compare prediction performance and explain 

experimental procedures [10, 11, 16–18]. 

This paper aims to evaluate the oxidation behavior 

of Ni-base alloys using PSO- ANN and GEP models 

[17]. In the current study, GEP (an advanced approach 

in artificial intelligent and modified PSO-artificial 

neural network strategy) has been utilized to construct a 

new model for the prediction and optimization of the 

oxidation resistance of Ni–Cr–W–Mo alloys as a 

function of main alloying element (i.e., Cr, W, Mo) 

using the reported data in the literature [1] as input. The 

samples produced by a combination of nominal 

composition in vacuum arc remelting furnace. XRD 

(X’pert MPD system of Philips instrument by Cu-Kα) 

and FESEM (MIRA3 model) were employed for phase 

analysis and morphological investigation, respectively. 

The motivation of this paper is to illustrate an 

appropriate model for the prediction of oxidation 

resistance of Ni–Cr–W–Mo alloys by artificial 

intelligence models as a function of the type and amount 

of alloying elements, (Cr, W, Mo) as well as 

determining the relative significance of input variable in 

output. 

 

 

2. COLLECTION OF EXPERIMENTAL DATA 
 
Determination of effective practical parameters as input 

has a key role in accurate modeling of specific output. 

Dae Won Yun et al. [1] have investigated the high-
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temperature behavior of Ni–Cr–W–Mo alloys using 

Bayesian neural network. They used 66 experiments of 

oxidation cyclic on 27 samples of Ni–Cr–W–Mo alloys 

with various alloying elements. According to their 

experiments the oxidation cyclic behavior is mainly a 

function of alloying elements. Hence, various alloying 

content of Cr (18, 22, 26 wt.%), W (10, 14, 18 wt.%) 

and Mo (0, 2, 4 wt.%) were selected for the preparation 

of 27 different samples of Ni-base alloys. The alloying 

element content are selected as input and the weight 

changes after 66 cycles (mg/cm2) are considered as 

output. Table 1 shows the chemical composition and 

corresponding weight changes for every sample [1]. 

 

 
TABLE 1. The details of experimental data for constructing 

of the GEP and modified PSO- ANN models [1] 

Alloys 

name 

Input Output 

Cr 

(wt. %) 

W 

(wt.%) 

Mo 

(wt.%) 

Weight changes 

after 66 cycles 

(mg/cm2) 

T01 18 10 0 -218.77 

T02 18 10 2 -136.69 

T03 18 10 4 -146.65 

T04 18 14 0 -182.14 

T05 18 14 2 -149.80 

T06 18 14 4 -124.40 

T07 18 18 0 -156.25 

T08 18 18 2 -126.72 

T09 18 18 4 -81.98 

T10 22 10 0 -37.03 

T11 22 10 2 -31.52 

T12 22 10 4 -25.63 

T13 22 14 0 -43.50 

T14 22 14 2 -26.99 

T15 22 14 4 -21.44 

T16 22 18 0 -50.09 

T17 22 18 2 -32.85 

T18 22 18 4 -17.24 

T19 26 10 0 -2.10 

T20 26 10 2 -4.73 

T21 26 10 4 -4.97 

T22 26 14 0 -6.06 

T23 26 14 2 -4.90 

T24 26 14 4 -4.76 

T25 26 18 0 -9.80 

T26 26 18 2 -7.01 

T27 26 18 4 -3.90 
 

As shown in Figure 1(a), the effective formation of 

Ni-based alloying was confirmed in the typically XRD 

pattern of T13 sample. Minor segregation of W and Cr 

are the other events shown in Figure 1(b).  the EDX 

point chemical analysis Figure 1(c) confirmed the 

presence of alloying elements in point A. 

 

2. 1. Artificial Neural Network (ANN)          ANN is 

a biologically inspired system developed to solve 

problems in the same way that the human brain would. 

Generally, the architecture of ANN consists of three 

different layers as follows i.e., input layer, hidden layer 

and output layer [19–23]. Back propagation is one of the 

most common methods for training ANN. The weight 

vector of network is also important since it is 

contributing to the better performance [24–26]. The 

meta-heuristic techniques have been getting attention to 

improve the parameters of ANN. Therefore, we apply 

PSO algorithm to optimize ANN’S weights [14, 27].  

 
2. 2. Particle Swarm Optimization (PSO)         
Particle swarm optimization (PSO) is one of the most 

popular population-based stochastic optimization 

 

 

 

 

 
Figure 1. Typically illustration of (a) XRD pattern and (b) 

FESEM image and (c) EDX point chemical analysis of point 

A of as-cast T13 prepared alloy 
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algorithms [28]. PSO technique has received wide 

attention in recent years since it can converge to the 

optimization value quickly and has excellent robustness 

[29, 30]. The aim of the current study is to determine 

the  most  appropriate  values  for  the  weights  and  

bias of NN (i.e., optimized NN) based on the PSO 

algorithm [31]. Then, we used optimized NN as the 

Fitness function of PSO to obtain the best values, of our 

futures. 

 
2. 3. GEP Methodology          GEP is an advanced 

evolutionary approach with the ability to model the high 

complexity problems by the employment of a linear 

representation of a practical process with nonlinear 

behavior [32]. GEP provides a simple genetic operator, 

similar to the genetic algorithm, for the illustration of 

complex and expressive trees similar to the genetic 

programming [33, 34]. GEP, at first, dedicating a 

constant length of a chromosome to the initial 

population that is randomly generated [35]. At second 

step, the fitness of individuals of chromosomes is 

estimated and at the third step, by considering the higher 

fitness as criterion, the most appropriate individuals are 

selected to enhance the model accuracy. These stages 

are repeated until pre-defined generations number or 

until an appropriate model has been determined. Figure 

2 illustrates the flowchart of Gene expression 

programming [36]. 

The input and output parameters for GEP modeling 

are the content of alloys elements, including Cr, Mo, W, 

and the weight changes after 66 cycles (mg/cm2), 

respectively. To construct the GEP models, 21 set of 

experiments were employed for training and the 

remaining 6 sets were utilized for testing of the 

proposed models. GEP starts by random selection of 21 

data set for training and 6 data set for testing the 

performance of proposed models. To model the 

oxidation behavior of Ni-base alloys, in the current 

study, GEP modeling was performed at the following 

steps:  

1. Evaluation of the fitness of generated chromosomes 

by consideration of root relative squared error (RRSE) 

as fitness function;  

2. Selection of the terminals and functions to construct 

the GEP chromosomes; 

3. Determination of chromosomes architecture, i.e., a 

function of head size and gene number; 

4. Definition of genetic operators and their related rates; 

5. Finding of appropriate function for connecting the 

genes, i.e., “division”, “multiplication”, “subtraction”, 

and “addition” in GEP software [37]. 

Hence, GEP modeling is a time-consuming and 

complicated process [37]. By utilization of trial and 

error during the changing of GEP characteristics (as 

shown in Table 2) and monitoring the accuracy criteria 

until the acceptable models were obtained [38]. 

 
Figure 2. Providing the GEP flowchart [10] 

 

 
TABLE 2. The characteristics of the training parameters of 

GEP models 

GEP parameters definition Choice 

Function set 

+, -, *, /,  ln(x), x2, √x
3

, 

Tanh(x) , Sech(x), Exp(x), atan(x), 
Max(x,y), Min(x,y), Not, Avg2, 

pow 

Number of chromosomes 30 

Head size 7,8 (GEP-10,GEP-11,GEP-12) 

Number of genes 3 

Linking function Addition, multiplication 

Fitness function error type RRSE 

Constant per gene 1 

Mutation rate 
0.00138,  0 (GEP-2, GEP-3, GEP-4, 

GEP-6, GEP-7, GEP-10, GEP-11) 

Inversion rate 

0(GEP-2, GEP-3, GEP-4, GEP-11), 

0.00546 (GEP-1, GEP-5, GEP-8, 
GEP-9, GEP-12), 0.0082 (GEP-6, 

GEP-7, GEP-10) 

One point recombination rate 

0(GEP-2, GEP-3, GEP-4, GEP-11), 
0.00277 (GEP-1, GEP-5, GEP-8, 

GEP-9, GEP-12). 0.0028 (GEP-6, 

GEP-7, GEP-10) 

Two point recombination rate 

0(GEP-2, GEP-3, GEP-4, GEP-11). 

0.00277 (GEP-1, GEP-5, GEP-8, 
GEP-9, GEP-12). 0.0028 (GEP-6, 

GEP-7, GEP-10) 

 
 
3. RESULTS AND DISCUSSIONS 
 
Since GEP and MPSO-ANN are able to model specific 

output as a function of independent variables, the 

dependency of input variables must be checked at first. 

It was necessary to note that the presence of any 

dependency between input parameters, i.e., Cr (wt.%), 

W (wt.%), and Mo (wt.%) can evolve the problem and 
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exaggerate the strength of each input variable. This 

study used bivariate correlation analysis to determine 

the relationship between the practical parameters. Table 

3 shows various correlation coefficients between 

practical parameters [39, 40]. As shown, there is not any 

interaction between the input parameters, and 

consequently, the collected experimental data set are 

appropriate for modeling by GEP and PSO-ANN. 

 
3. 1. MPSO-ANN Model Results              The evolution 

of 10 most appropriate MPSO-ANN models has been 

carried out by employment of two statistical indices, 

viz. root mean square error (RMSE) and the correlation 

coefficient between two data sets (R2). It was necessary 

to note that the network with values of error indices 

closer to zero and value of R2 closer to one shows better 

performance. Equations (1) and (2) show these indices. 

RSME = √
1

n
∑ (hp

n
i=1 −ha)2  (1) 

R2 = 1 −
∑ (h−n

i=1 hp)2

∑ (h−n
i=1 hˉa)2      (2) 

in which, ha, hp, h¯a and n are the experimental (target) 

value (actual weight changes after 66 cycles (mg/cm2)), 

the predicted value of weight changes, the average of 

the actual value of weight changes during the two-run of 

measurements and the number of experimental samples, 

respectively. 

Table 4 compares the 10 most appropriate MPSO-

ANN models for the prediction of the oxidation 

resistance of Ni-based alloys in detail. As shown, 

various functions and neuron numbers caused the 

changes in the number of statistical indices. In addition, 

logsig and tansig are employed as activation functions 

during the optimization process. 

Figure 3 compares the statistical indices for 

validation of proposed MPSO-ANN performances. In 

the case of RMSE (Figure 3(b)), the lower values of 

error belong to model 5 and consequently, this model 

shows higher performance with respect to the other. 

This situation belongs to model 9 for the case of R2 as a 

threshold, because of its closer values to 1 (Figure 3(a)). 

If Fitness value, defined as the amount of both types of 

indices (error and R2), the behavior of the proposed 

model as a function of network number can be 

monitored as shown in Figure 4. Accordingly, by 

 

 
TABLE 3. Dearson’s correlation coefficients among all pairs 

of input variables 

Parameters Cr (wt.%) W (wt.%) Mo (wt.%) 

Cr (wt.%) 1 0 0 

W (wt.%) 0 1 0 

Mo (wt.%) 0 0 1 

TABLE 4. Details of trained MPSO-ANN models 

Model Neurons Function R2 RMSE 

PSO-ANN 1 8-7-1 logsig-purelin 0.8532 0.0086 

PSO-ANN 2 8-4-1 tansig-purelin 0.9118 0.0003 

PSO-ANN  3 8-8-1 tansig-purelin 0.8636 0.0005 

PSO-ANN  4 8-3-1 logsig-purelin 0.7795 0.0008 

PSO-ANN  5 8-14-1 logsig-purelin 0.8635 0.0002 

PSO-ANN  6 8-12-1 tansig-purelin 0.8141 0.0048 

PSO-ANN 7 8-17-1 logsig-purelin 0.8607 0.0006 

PSO-ANN 8 8-28-1 logsig-purelin 0.8607 0.0006 

PSO-ANN 9 8-25-1 tansig-purelin 0.9337 0.0014 

PSO-ANN 10 8-16-1 logsig-purelin 0.9006 0.0030 

 

 

 

 
Figure 3. The statistical quality criteria of PSO-ANN 

networks (a) R2, (b) RMSE 
 
 

 
Figure 4. Fitness values of different ANN-PSO networks 

 

 

consideration of both types of indices, including R2 and 

RMSE, model 9 proposed as the most appropriate 

models in this study. Because of the best performance 
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was achieved when fitness value was closer to zero. 

Fitness value was proposed as Equation (3): 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 = RMSE −
1

𝑅2
      (3) 

In Figure 5, normalized data of weight loss as a function 

of various alloying elements have been reported and 

confirmed the acceptable performance of MPSO-ANN 

network. In addition, the accuracy of MPSO- ANN 9 

network is higher for the estimation of the effect of Cr, 

W, and Mo. 

 

3. 2. GEP Model Results              In current work, GEP, 

i.e., an advanced methodology in AI has been utilized to 

model the oxidation behavior of Ni-based alloys in the 

presence of Cr, W, and Mo as alloying elements. Hence, 

12 different GEP models were proposed after evaluation 

of 100 models constructed with various GEP parameters 

including chromosome number, head size, gene number, 

linking function and function set [12]. 

 

 

 

 
 

 
Figure 5. Predicted weight loss based on alloying elements 

Cr(a), W(b) and Mo(c) by hybrid ANN and MPSO algorithm 

It was necessary to note that due to the possibility of 

various combination in GEP parameters, construction of 

GEP model for all these combinations need a huge 

amount of computational time. Table 5 indicates the 

training and test evaluation of GEP model after 66 

oxidation cycles. In a similar approach for validation of 

PSO-ANN networks, the statistical indicator including 

root mean square error (RMSE) and an absolute fraction 

of variance (R2) are utilized for validation of the 

accuracy GEP models [41]. As shown in Table 4, R2 

values changed in the range of 0.938-0.991 for the 

training step and 0.931-981 for the testing step. The 

minimum amount of RMSE is equal to 0.0572 in testing 

and 0.0279 for the training step, respectively. By 

consideration of the higher value of R2 (close to 1) and 

lower value of RMSE (close to zero) as criteria, GEP-

12, GEP-11, GEP-8 and GEP-9 were selected from 100 

GEP investigated models. Figure 5 compares the 

changes of statistical indicators in training and testing of 

most appropriate GEP models. Analysis of Figure 6 

reveals that GEP-11 shows higher accuracy with respect 

to the other GEP models in prediction of high-

temperature oxidation behavior of Ni-Cr-W-Mo alloys. 

Table 6 Summary of the most appropriate 12 GEP 

models. 

Figure 7 shows the comparison of R2 and MSE for 

GEP-8, GEP-9, GEP-11 and GEP-12 models in testing 

and training phases. In these Figures, the sample 

numbers shown in circles and hexagons, while the 

numbers in vertical axis belong to the weight changes 

after 66 cyclic oxidation tests. As can be seen, R2 and 

RMSE training and testing of GEP-11 model confirmed 

the  higher  accuracy  of  GEP-11  respect  to  the   other 

 

 
TABLE 5. Statistics indicator values for the validation of 

proposed GEP models 

Model 
R2 RMSE Best Fitness 

Train Test Train Test Train Test 

GEP-1 0.9380 0.9382 0.0770 0.0713 799.5 795.20 

GEP-2 0.9706 0.9465 0.0529 0.0977 853.03 739.19 

GEP-3 0.9903 0.9662 0.0302 0.0875 910.46 759.77 

GEP-4 0.9445 0.9759 0.0731 0.0914 804.81 751.84 

GEP-5 0.9913 0.9553 0.0290 0.1019 913.55 730.96 

GEP-6 0.9738 0.9485 0.0528 0.0979 835.6 738.78 

GEP-7 0.9867 0.9314 0.0354 0.0782 896.52 779.84 

GEP-8 0.9824 0.9700 0.0412 0.0596 881.75 882.87 

GEP-9 0.9887 0.9715 0.0325 0.0572 904.15 828.74 

GEP-10 0.9823 0.9559 0.0408 0.0686 882.74 801.48 

GEP-11 0.9919 0.9812 0.0279 0.0822 771.01 916.53 

GEP-12 0.9637 0.9774 0.0604 0.063 835.62 813.66 
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Figure 6. Different errors for training and testing data series in 

GEP models; (a) R2and (b) RMSE 

 

 
models (Figures 7 (e) and 7 (f)). Accordingly, the 

empirical weight changes, after 66 cycles of oxidation 

of Ni-Cr-W-Mo alloys are in good agreement with the 

predicted weight variation with GEP-11. 

Boxplot is a popular approach for the visual 

representation of data sets through their quartiles. 

Whisker, i.e., parallel lines extending from the boxes, is 

utilized to show the variability region at the upper and 

lower quartiles. Outliers are often shown as separate 

dots in the line with whiskers. Taking less space as well 

as its ability for comparing the distribution of any data 

set is the main advantage of boxplot [42]. Boxplot 

provides the possibility of determination of the outliers 

the symmetricity of data, the amount of data set tightly, 

direction, and amount of skewed diagrams as a visual 

representation. 
To find the best model for the explanation of the 

oxidation behavior of Ni-Cr-W-Mo alloys, boxplot is 

utilized in this study. Accordingly, the residual error, 

defined as the difference between the predicted and 

experimental values, is plotted for various GEP models. 

Figure 8 compares the boxplot of the training and 

testing phase for various GEP models [42]. 

In boxplot, the rectangle displays the distance 

between the first and third quarters and the line within 

the rectangle determines the second quarter. The black 

lines outside the rectangle show the minimum and 

maximum data values. Moreover, the outliers are 

illustrated in boxplot. As shown in Figure 8, GEP-11 

and GEP-8 have shown the lowest amount of residual 

error. However, GEP-8 model illustrates higher outliers 

and caused a severe reduction of its performance. 

Moreover, exception the GEP-8 and GEP-12, the data 

tend toward the higher values and their distribution 

skewed to the top [42]. In Figure 8 b, all GEP models 

show at least one outlier data exceptional the GEP-12 

with to outliers. In addition, GEP-8 and GEP-11 have 

lower values of residual errors. 

 

 
TABLE 6. Summary of most appropriate GEP models in the 

prediction of the oxidation resistance 

Model Inferring equation 

GEP-1 

y = min((GEP3Rt((Cr*Mo)) +GEP3Rt((W+0.492))), Mo) + 

((((1.0-Cr) *(-0.640)) *(1.0-Cr)) * ((Cr+(0.640)) ^2)) + 

((((1.0-Mo) -(-5.298+Mo))+(((-

5.298+Cr)+max(Cr,Mo))/2.0))/2.0) 

GEP-2 

y = ((((1.0-Mo) -(-7.388+Mo)) +max(((Cr+Cr)/2.0), 

((Mo+W)/2.0)))/2.0) + ((((1.0-Cr) *(-0.659)) * (1.0+0.659)) 
*((Cr-0.659) ^2)) + min (((((1.35) -(Cr-0.675)) 

+GEP3Rt(0.675))/2.0), Mo) 

GEP-3 

y = ((min(((Cr+Cr) +((W+Mo)/2.0)), max (0,931, Mo)) 
+Cr)/2.0) +(1.0/((1.196*(((Cr+Cr) +1.196) +exp(1.196))))) + 

(((((0.281*W)*Mo)^2)+((Cr-0.281)-(Cr^2)))/2.0) 

GEP-4 

y = min((((((Cr+Mo)/2.0)^2)+tanh((0.142-Mo)))/2.0),Mo) + 
(((min((Cr-0.216),(Mo*0.216))+(W*0.216))/2.0)+0.216) + 

(min((Cr+Mo),0,759)+((Mo*0.759)-((Mo+Mo)/2.0))) 

GEP-5 

y = tanh(((GEP3Rt((((-1.940+2.486)/2.0)+(Cr*W)))^2)^2)) * 
GEP3Rt(tanh((((((W+Mo)/2.0)^2)^2)+Cr))) * (((1.0-

Mo)+(Cr+Mo)-(((Cr^2)+((W+Cr)/2.0))/2.0)) 

GEP-6 

y = (((9.143+(Cr+9.143))/2.0)*((9.143-Mo)-(Cr^2))) + 
((min(Cr,0.139)-(0.278))+((W*0.139)*(Cr^2))) + 

((((Cr+W)+(Cr+Mo))+((1.0-W)*(Cr+0.45)))/2.0) 

GEP-7 

y = atan((exp(-0.707)*GEP3Rt(((Cr+Mo)/2.0)))) + 
atan(atan(atan(GEP3Rt(max((W*1.495),Cr))))) + 

((GEP3Rt(Mo)-tanh(Mo))*(max(0.804)-(1.0-0.402))) 

GEP-8 

y = ((sech(Cr)*(Cr+Cr))-max(max(0.113,Cr),(0.113*Cr))) + 

(atan((max(Cr,W)-(-0.612)))* 

((0.374)-(Mo*Cr))) + 

((min(Mo,Cr)+(0.321))*max((Cr*Cr),atan(Mo))) 

GEP-9 

y= atan((atan((-0.757*Cr))+((tanh(Cr)+atan(Cr))/2.0))) + 

atan(atan((((atan(Mo)+((0.110+W)/2.0))/2.0)+(Cr+Cr)))) + 

max((((-0.418+Cr)-W)*(1.0-Cr)),atan((0))) 

GEP-10 

y = GEP3Rt(tanh((((0.840-Mo)-exp(Cr))*exp(exp(Cr))))) * 

((tanh((max(W,Cr)+(Mo+Cr)))+GEP3Rt(Cr))/2.0)* min((-

1.004),GEP3Rt(((Cr-0.502)-tanh(Mo)))) 

GEP-11 

y = max((1.0-(1.0-

tanh(Cr))),(((min(W,W)+(0.127*Mo))/2.0)^2)) + 
(((GEP3Rt(GEP3Rt(Cr))+(Mo*0.237))/2.0)/((0.474)+(Cr+Cr)

))+(((((-0.347*Cr)+(-0.347)) +tanh((Cr^2)))/2.0)*(-0.347)) 

GEP-12 

y = (((((1.0-Cr)-Mo)+(-0.427 *W))/2.0)*((((W+Cr)/2.0)+(Cr-
0.427))/2.0))+ (tanh(Cr)-min((Cr-(Cr+W)),(-0.869)))+ 

((1.0/(reallog(((0.472)/2.0))))+(((tanh(Cr)-

Cr)+((Mo+Cr)/2.0))/2.0)) 
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Figure 7. Comparison of R2 and MSE for testing and training 

phases of the most appropriate model prepared by GEP; (a, b): 

training and testing of GEP-8; (c, d): training and testing of 

GEP-9; (e, f): training and testing of GEP-11; (g, h): training 

and testing related to GEP-12 

 
 

Since, the aim of this study is to illustrate a model 

with the highest performances, the boxplot of 27 

samples has been prepared by the most appropriate GEP 

models (Figure 9). Accordingly, in spite of the presence 

of an outlier in GEP-12, due to the wide distribution of 

residual error, this model was rejected. The other GEP 

models (GEP-8 and GEP-9) showed at least two outlier 

data, while GEP-11 has symmetrical distribution as well 

as one outlier data. Accordingly, GEP-11 has been 

proposed as the most appropriate model for prediction 

of the oxidation behavior of Ni-Cr-Mo-W alloys at high 

temperatures.  

 
3. 3. Sensitivity Analysis           Since, the proposed 

PSO- ANN network and GEP model have acceptable 

performance for the prediction of oxidation behavior, 

the sensitivity analysis was performed on both of them 

and the results were compared. 

 

 
Figure 8. The values of residual error for GEP models in the 

form of boxplots for the (a) training and (b) testing datasets 
 

 

3. 3. 1. Sensitivity Analysis using PSO- ANN 
Network               In this approach, the sensitivity 

analysis was performed by changing the values of each 

parameter in the range of lower and higher levels of 

practical values when the other parameters remained 

constant in their average values. In addition, to provide 

the possibility of illustration of all affected parameters 

with various values and their distribution, all inputs 

were standardized by definition of z- square [35]. 

𝑍 =
(h𝑖−ℎ̅)

𝜎
                                                        (4) 

where, hi, h, σ and Z are the ith variable, the average, 

standard deviation of input parameters, and the 

standardized value of parameter, respectively. The 

display of weight changes versus the changes of any 

input parameters are shown in Figure 10. As shown, the 

change in the input parameter (Mo) versus the output 

parameter (weight changes after 66 cycles) is very small 

and it is as a straight line. Therefore, the weight percent 

of Mo has the least effect on the weight changes 

(oxidation resistance) while Cr and W have the most 

effect on oxidation resistance, respectively. 

 

 

 
Figure 9. The values of residual error for GEP models in the 

form of box plots for all of 27 Ni–Cr–W–Mo alloys 
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Figure 10. Sensitivity analysis of input parameters on the 

weight changes after 66 cycles [35] 
 
 
3. 3. 2. Sensitivity Analysis using GEP           Similar 

approach was used to determine the sensitivity analysis 

in current study. In this regard, various noises were 

created on the input data at 5 and 10 % and compared 

the amount of output error by actual values. 

Figure 11 shows the sensitivity analysis to determine 

the relative significance of Cr content on the oxidation 

resistance of Ni-Cr-W-Mo alloys investigated in this 

study. According to this figure, the oxidation resistance 

of Ni-based alloys is proportional to their Cr content. 

Also, the positive effect of Cr amount on the oxidation 

resistance is more severe at higher Cr content, i.e., 

(T19-T27) alloys with 26 wt.% of Cr. However, the 

positive effect of Cr content in other samples with 22 

and 18 wt.%  of  Cr  is lower proportional to the amount 

 

 

 

 
Figure 11. Sensitivity analysis for determination of the effect 

of Cr on the oxidation resistance of Ni–Cr–W–Mo alloys. (a) 

Increasing the Cr content, (b) Decreasing Cr content 

of Cr in (T1, T2, T3, T4, T5, T6, T7, T8, T9), (T10, 

T11, T12, T13, T14, T15, T16, T17, T18) alloys. 

Moreover, the presence of Mo and W in the alloys with 

22 wt.% and 26 wt.% of Cr decreased the positive effect 

of Cr in oxidation resistance. In this trend, W shows 

lower effect compared to Mo. 

Figure 11 (b) reveals that the effect of reducing the 

Cr content on decreasing the oxidation resistance is 

higher in the sample with 26 wt.% of Cr with respect to 

the other. Also, the presence of Mo and W in alloys 

with 18 wt.% Cr compensates for the negative effect of 

lower Cr on the cyclic oxidation behavior. In this 

regard, Mo is more effective than the W. 

The results of the sensitivity analysis on the effect of 

W content is shown in Figure 12. As shown in Figure 12 

(a), similar to the effect of Cr, generally the addition of 

W amount enhances the oxidation resistance and this 

positive effect of W is more serious in alloys with the 

lower content of Cr. Also, by decreasing W content 

(Figure 12 (b)), oxidation resistance of low Cr content 

(18 wt.%) is decreased and this trend is intensified in 

the presence of Mo. 

Analysis of Figure 13 (b) shows that similar trends 

to Cr and W have evolved in the presence of Mo on the 

oxidation resistance of Ni-Cr-Mo-W alloys. This effect 

is higher in low Cr content (18 wt.%) alloys. Moreover, 

decreasing Mo content decreased the oxidation 

resistance and this trend is more intensified in low Cr 

content alloys.  

 

 

 

 
Figure 12. Sensitivity analysis for determination of the effect 

of W on the oxidation resistance of Ni–Cr–W–Mo alloys. (a) 

Increasing the W content, (b) Decreasing W content 
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Figure 13. Sensitivity analysis for determination the effect of 

Mo on the oxidation resistance of Ni–Cr–W–Mo alloys. (a) 

Increasing the Mo content, (b) Decreasing Mo content 

 

 
In conclusion, Cr, Mo and W enhanced the oxidation 

resistance of Ni-Cr-Mo-W alloys. However, in higher 

Cr containing alloys (alloys with 22 and 26 wt.% of Cr), 

the Cr content is administrated parameters on the 

oxidation behavior. The presence of Mo and W induced 

a positive effect on the oxidation behavior of 18 wt.% 

Cr. While this effect is reversed in high Cr content 

alloys (26 and 22 wt.% Cr).  

In summary, the higher Cr contents facilitate the 

formation of adhesive Cr-rich oxide protective layer and 

induce higher temperature resistance. Typically in the 

alloys containing 26 wt.% Cr, the continuity and 

adhesivity of surface Cr2O3 layer disturbed in the 

presence of other alloying elements including W and 

Mo. It seems that these elements disturb the protective 

Cr2O3 surface films through the evaporation of W and 

Mo oxides [43]. While, in the case of alloys with Cr 

content lower than 22 wt.%, the effect of W and Mo 

were reversed. In this condition, such alloying oxides 

can provide robust surface protectivity of the oxide 

layer at high temperatures [44]. 

In Figure 14, the weight changes from experimental 

studies are compared with the predicted values using 

GEP- 11 and the MPSO-ANN 9 models. As can be 

seen, the values predicted by GEP- 11 model are more 

accurate than the MPSO model and are closer to real 

values and this means that the presented GEP model has 

achieved success in simulation of the high-temperature 

oxidation behavior of the Ni-based alloys. 

 
Figure 14. The comparison between the experimental weight 

changes (after 66 cycles) and the predicted weight changes by 

GEP and MPSO-ANN models 

 

 
4. CONCLUSIONS 
 
The prediction resistance of Ni-Cr-Mo-W alloys has a 

key role in the improvement and desig of new high-

temperature resistance materials. MPSO-ANN and GEP 

are increasingly being seen as a novel evolutionary 

algorithm, which enhanced many advantages of 

previously constructed models. Based on the results of 

the current study in which MPSO- ANN and GEP are 

utilized to model the oxidation behaviors of Ni-Cr-Mo-

W alloys, confirmed that the GEP models have the 

higher performance for modeling of high-temperature 

resistance behavior. Accordingly, the GEP model and 

MPSO-ANN model with R2 and RMSE values equal to 

0.9919, 0.0279, 0.9337, and 0.0014, respectively 

proposed as appropriate models for prediction of the 

oxidation behavior of Ni-Cr-Mo-W alloys. Moreover, 

the sensitivity analysis revealed that at higher Cr content 

(i.e., 22 and 26 wt.%), Cr was administrated alloying 

elements on the high-temperature resistance, while, in 

the lower Cr content (i.e., 18 wt.%), the presence of Mo 

(with the higher effect), and W (with the lower effect) 

can compensate the lower content of Cr content. 
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Persian Abstract 

 چکیده 
ا عناصر    ی مقاله سع   ن یدر  گرفتن  نظر  در  با  تا  عنوان متغ Mo  و    Cr ،Wیاژیآلشده  به  اکسری،  رفتار  نیکل    ی اژهایآل  ونیداسی،  از  شود.    یسازمدلپایه  این هدف  به  نیل  برای 

)  یسازنهیبه  یمصنوع  یعصب  یهاشبکه شده  اصلاح  تکنMPSO-ANNذرات  و  )  انیب  یسینوبرنامه  یهاکی(  استفادGEPژن  برا  ه(  مدل  یشدند.  -MPSO)  یهاساخت 

ANN  و )GEP  مختلف  ریمقاد  با  کلین  پایه  اژینمونه آل  27  روی  گرادی درجه سانت  1150-400  یدر محدوده دما  سیکلی  ونیداسیاکسنمونه    66  نتایج  ازCr   ،W    وMo    استفاده

، یشنهادیپ  یهاعملکرد مدل  لیتحل  ی. براشدنددر نظر گرفته  مدل    یبه عنوان خروج  ون یداسیوزن در چرخه اکس  رییو تغ   یورود  یرهایبه عنوان متغ   یاژیدرصد عناصر آل  شد.

 سازی برای مدل  شده  یآورجمع  یها( استفاده شد. داده2Rدو مجموعه داده )  نیب  یهمبستگ  بی( و ضرRMSEمربعات )  یخطا  نیانگیم  مانند جذر  ،ی مختلف آمار  یهاشاخص

GEP  داده  6و    مجموعه داده آموزشی  21به    یطور تصادف  به نتاگردید  میتقس  یشیآزما  مجموعه  از    ونیداسیرفتار اکس  یساز مدلامکان  کرد که    دییتأ  جی.  استفاده  با   GEPبا 

 ونیداسیسمقاومت به اک   Wو    Cr  ،Mo  که  ، مشخص شداریبه عنوان مع   ونیداسی. با در نظر گرفتن مقاومت در برابر اکسوجود دارد  2R  ،08822 = RMSE = 0.981 یرمقاد

 دهد.را به مقدار زیادی کاهش می Moو  Wتاثیر ، یدرصد وزن 22بالاتر از  مقادیردر  ژهی و، بهیاژیحضور کروم به عنوان عنصر آل همچنین،. دهدمی شیرا افزا  پایه نیکل یاژهایآل

  . شودباعث بهبود قابل ملاحظه مقاومت به اکسیداسیون می درصد  20کروم کمتر از  ینمونه با محتوادر   Moو  Wحضور که  یدر حال
 

 


