Effect of Porous Medium Positioning on Heat Transfer of Micro-channel with Jet

Document Type : Original Article


Department of Mechanical Engineering, Arak University of Technology, Arak, Iran


In this paper, the influence of the locating additive or placing porous-medium film on the heat transfer of a micro-channel by injecting fluid from its lower wall is investigated. The boundary condition slip-walls for the lower and higher walls of the micro-channel and orderly, as insulation and constant temperature is considered, respectively results show that the heat transfer increased with increasing Darcy number and the porous-medium film thickness. The consequences disclosed that the place of the porous-film has a substantial effect on heat transfer. The percentage changes observed for cases such the porous layer in the middle of the micro-channel, near the two upper and lower walls, near the upper wall, near the upper wall and in the form of a rib, along the length of the micro-channel with L /3 and L/5 is -14%, 2.25%, 5.46%, 55.53%, 70.5% and 86.27% for nusselt number compared to the porous layer-less state.


1.     Tuckerman, D.B. and Pease, R.F.W., "High-performance heat sinking for vlsi", IEEE Electron Device Letters,  Vol. 2, No. 5, (1981), 126-129. http://dx.doi.org/10.1108/HFF-04-2018-0149
2.     Yang, D., Wang, Y., Ding, G., Jin, Z., Zhao, J. and Wang, G., "Numerical and experimental analysis of cooling performance of single-phase array microchannel heat sinks with different pin-fin configurations", Applied Thermal Engineering,  Vol. 112, (2017), 1547-1556. http://dx.doi.org/10.1016/j.applthermaleng.2016.08.211
3.     Wang, H., Chen, Z. and Gao, J., "Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks", Applied Thermal Engineering,  Vol. 107, (2016), 870-879. https://doi.org/10.1016/j.applthermaleng.2016.07.039
4.     Chen, Y., Zhang, C., Shi, M. and Wu, J., "Three-dimensional numerical simulation of heat and fluid flow in noncircular microchannel heat sinks", International Communications in Heat and Mass Transfer,  Vol. 36, No. 9, (2009), 917-920. https://doi.org/10.1016/j.icheatmasstransfer.2009.06.004
5.     Gunnasegaran, P., Mohammed, H., Shuaib, N. and Saidur, R., "The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes", International Communications in Heat and Mass Transfer,  Vol. 37, No. 8, (2010), 1078-1086. http://dx.doi.org/10.1016%2Fj.icheatmasstransfer.2010.06.014
6.     Masuda, H., Ebata, A., Teramae, K., Hishinuma, N. and Ebata, Y., "Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ- Al2O3, SiO2 and TiO2 ultra-fine particles)",  Netsu Bussei 1993 Vol. 7, No. 4, (1993). https://doi.org/10.2963/jjtp.7.227
7.     Khanafer, K., Vafai, K. and Lightstone, M., "Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids", International Journal of Heat and Mass Transfer,  Vol. 46, No. 19, (2003), 3639-3653. https://doi.org/10.1016/S0017-9310(03)00156-X
8.     Pourmehran, O., Rahimi-Gorji, M., Hatami, M., Sahebi, S. and Domairry, G., "Numerical optimization of microchannel heat sink (mchs) performance cooled by kkl based nanofluids in saturated porous medium", Journal of the Taiwan Institute of Chemical Engineers,  Vol. 55, (2015), 49-68. https://doi.org/10.1016/j.jtice.2015.04.016
9.     Ajeel, R.K., Salim, W.-I. and Hasnan, K., "Comparative study of the thermal performance of corrugated channels using ZnO–water nanofluid", Journal of Thermophysics and Heat Transfer,  Vol. 33, No. 2, (2019), 508-516. https://doi.org/10.2514/1.T5497
10.   Ting, T.W., Hung, Y.M. and Guo, N., "Entropy generation of viscous dissipative nanofluid convection in asymmetrically heated porous microchannels with solid-phase heat generation", Energy Conversion and Management,  Vol. 105, (2015), 731-745. https://doi.org/10.1016/j.enconman.2015.08.022
11.   Hosseini, S., Ghasemian, M., Sheikholeslami, M., Shafee, A. and Li, Z., "Entropy analysis of nanofluid convection in a heated porous microchannel under mhd field considering solid heat generation", Powder Technology,  Vol. 344, (2019), 914-925. https://dx.doi.org/10.1016/j.powtec.2018.12.078
12.   Moshizi, S., "Forced convection heat and mass transfer of mhd nanofluid flow inside a porous microchannel with chemical reaction on the walls", Engineering Computations,  (2015). https://doi.org/10.1108/02644401211246283
13.   Shiriny, A., Bayareh, M. and Nadooshan, A.A., "Nanofluid flow in a microchannel with inclined cross-flow injection", SN Applied Sciences,  Vol. 1, No. 9, (2019), 1015. .https://doi.org/10.1007/s42452-019-1050-y
14.   Jalali, E. and Karimipour, A., "Simulation the effects of cross-flow injection on the slip velocity and temperature domain of a nanofluid flow inside a microchannel", International Journal of Numerical Methods for Heat & Fluid Flow, (2019). http://dx.doi.org/10.1108/HFF-04-2018-0149
15.   Barzegar, M.H. and Fallahiyekta, M., "Increasing the thermal efficiency of double tube heat exchangers by using nano hybrid", Emerging Science Journal,  Vol. 2, No. 1, (2018), 11-19. https://doi.org/10.28991/esj-2018-01122
16.   Manikandan, G., Yuvashree, M., Sangeetha, A., Bhuvana, K. and Nayak, S.K., "Liver tissue regeneration using nano silver impregnated sodium alginate/pva composite nanofibres", SciMedicine Journal,  Vol. 2, No. 1, (2020), 16-21. https://doi.org/10.28991/SciMedJ-2020-0201-3
17.   Kostikov, Y.A. and Romanenkov, A.M., "The technology of calculating the optimal modes of the disk heating (ball)", Civil Engineering Journal,  Vol. 5, No. 6, (2019), 1395-1406. https://doi.org/10.28991/cej-2019-03091340
18.   Su, C. and Cheng, Y.-h., "Numerical and experimental research on convergence angle of wet sprayer nozzle", Civil Engineering Journal,  Vol. 4, No. 9, (2018), 1985-1995. https://doi.org/10.28991/cej-03091132
19.   Shokouhmand, H., Jam, F. and Salimpour, M., "The effect of porous insert position on the enhanced heat transfer in partially filled channels", International Communications in Heat and Mass Transfer,  Vol. 38, No. 8, (2011), 1162-1167.http://dx.doi.org/10.1016%2Fj.icheatmasstransfer.2011.04.027
20.   Miroshnichenko, I.V., Sheremet, M.A., Oztop, H.F. and Abu-Hamdeh, N., "Natural convection of Al2O3/H2O nanofluid in an open inclined cavity with a heat-generating element", International Journal of Heat and Mass Transfer,  Vol. 126, No., (2018), 184-191. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.146
21.   Nojoomizadeh, M., Karimipour, A., Firouzi, M. and Afrand, M., "Investigation of permeability and porosity effects on the slip velocity and convection heat transfer rate of fe3o4/water nanofluid flow in a microchannel while its lower half filled by a porous medium", International Journal of Heat and Mass Transfer,  Vol. 119, (2018), 891-906. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.125
22.   Kalteh, M., Abbassi, A., Saffar-Avval, M. and Harting, J., "Eulerian–eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel", International Journal of Heat and Fluid Flow,  Vol. 32, No. 1, (2011), 107-116. https://doi.org/10.1016/j.ijheatfluidflow.2010.08.001
23.   Moshizi, S., Malvandi, A., Ganji, D. and Pop, I., "A two-phase theoretical study of al2o3–water nanofluid flow inside a concentric pipe with heat generation/absorption", International journal of thermal sciences,  Vol. 84, (2014), 347-357. https://doi.org/10.1016/j.ijthermalsci.2014.06.012
24.   Rashidi, M., Hosseini, A., Pop, I., Kumar, S. and Freidoonimehr, N., "Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel", Applied Mathematics and Mechanics,  Vol. 35, No. 7, (2014), 831-848. https://doi.org/10.1007/s10483-014-1839-9
25.   Hung, T.-C., Huang, Y.-X., Sheu, T.-S. and Yan, W.-M., "Numerical optimization of the thermal performance of a porous-microchannel heat sink", Numerical Heat Transfer, Part A: Applications,  Vol. 65, No. 5, (2014), 419-434. https://doi.org/10.1080/10407782.2013.836005
26.   Guo, Z., Saunders, N., Miodownik, A. and Schillé, J., Aluminium alloys, their physical and mechanical properties, j. Hirsch, b. Skrotzki, and g. Gottstein, ed. 2008, Wiley-VCH.
27.   Mohammed, R.H., Mesalhy, O., Elsayed, M.L., Huo, R., Su, M. and Chow, L.C., "Performance of desiccant heat exchangers with aluminum foam coated or packed with silica gel", Applied Thermal Engineering,  Vol. 166, (2020), 114626. https://doi.org/10.1016/j.applthermaleng.2019.114626
28.   Nield, D.A. and Bejan, A., "Convection in porous media, Springer,  Vol. 3,  (2006). https://doi.org/10.1007/978-1-4614-5541-7
29.   Brinkman, H., "The viscosity of concentrated suspensions and solutions", The Journal of Chemical Physics,  Vol. 20, No. 4, (1952), 571-571. https://doi.org/10.1063/1.1700493