Investigation of Vibration Modes of Double-lap Adhesive Joints: Effect of Slot

Document Type : Original Article


Dipartimento di Ingegneria Civile, Edile e Architettura (DICEA), Università Politecnica delle Marche, via B. Bianche, Ancona, Italy


Adhesive joints represent a viable alternative to traditional joining methods. The analysis of frequencies and modal shapes is fundamental to predict the vibrational behaviour of a structural component subjected to dynamic stress. There are numerous studies in the literature to determine the trend of stresses in the bonded region. It has been proved that the introduction of a slot in the inner adherend allows to reduce the stress concentration at the edges of the adhesive region. In this paper, the influence of imperfections in the central adherend is investigated by FEM analysis. The FE software ANSYS©19 is used for the modal analysis of the double lap adhesive joints and the first five modes are considered. The results show the influence of Young’s modulus and density ratio on the natural frequencies, varying with the material. Moreover, the introduction of the imperfection is found to influence the vibrational behavior as the frequency increases. It is also observed that the mass reduction due to the introduction of the crack does not change the shape and modal frequency for the most significant modes, while it causes more important changes for the last vibrational mode. Therefore the introduction of the crack does not significantly change the dynamic behaviour of the joint and allows to realize a more even distribution of stresses, reducing the stress peaks values.


1.     Jairaja, R. and Naik, G.N., "Numerical studies on weak bond effects in single and dual adhesive bonded single lap joint between cfrp and aluminium", Materials Today: Proceedings,  Vol. 21, (2020), 1064-1068. doi: 10.1016/j.matpr.2020.01.006
2.     Adamos, L., Tsokanas, P. and Loutas, T., "An experimental study of the interfacial fracture behavior of titanium/cfrp adhesive joints under mode i and mode ii fatigue", International Journal of Fatigue,  Vol. 136, (2020), 105586. doi: 10.1016/j.ijfatigue.2020.105586
3.     Min, J., Wan, H., Carlson, B.E., Lin, J. and Sun, C., "Application of laser ablation in adhesive bonding of metallic materials: A review", Optics & Laser Technology,  Vol. 128, (2020), 106188. doi: 10.1016/j.optlastec.2020.106188
4.     Banea, M., Rosioara, M., Carbas, R. and Da Silva, L., "Multi-material adhesive joints for automotive industry", Composites Part B: Engineering,  Vol. 151, (2018), 71-77. doi: 10.1016/j.compositesb.2018.06.009
5.     Loureiro, A., Da Silva, L.F., Sato, C. and Figueiredo, M., "Comparison of the mechanical behaviour between stiff and flexible adhesive joints for the automotive industry", The Journal of Adhesion,  Vol. 86, No. 7, (2010), 765-787. doi: 10.1080/00218464.2010.482440
6.     Kinloch, A.J., "Adhesion and adhesives: Science and technology, Springer Science & Business Media,  (2012). doi: 10.1007/978-94-015-7764-9
7.     Arenas, J.M., Alía, C., Narbón, J.J., Ocaña, R. and González, C., "Considerations for the industrial application of structural adhesive joints in the aluminium–composite material bonding", Composites Part B: Engineering,  Vol. 44, No. 1, (2013), 417-423. doi: 10.1016/j.compositesb.2012.04.026
8.     He, X., "A review of finite element analysis of adhesively bonded joints", International Journal of Adhesion and Adhesives,  Vol. 31, No. 4, (2011), 248-264. doi: 10.1016/j.ijadhadh.2011.01.006
9.     Liao, L., Huang, C. and Sawa, T., "Effect of adhesive thickness, adhesive type and scarf angle on the mechanical properties of scarf adhesive joints", International Journal of Solids and Structures,  Vol. 50, No. 25-26, (2013), 4333-4340. doi: 10.1016/j.ijsolstr.2013.09.005
10.   Silva, L.F., Öchsner, A. and Adams, R.D., Introduction to adhesive bonding technology, in Handbook of adhesion technology. 2011. doi: 10.1007/978-3-319-55411-2_1
11.   Ramalho, L., Campilho, R., Belinha, J. and da Silva, L., "Static strength prediction of adhesive joints: A review", International Journal of Adhesion and Adhesives,  Vol. 96, (2020), 102451. doi: 10.1016/j.ijadhadh.2019.102451
12.   Kanani, A.Y., Hou, X. and Ye, J., "The influence of notching and mixed-adhesives at the bonding area on the strength and stress distribution of dissimilar single-lap joints", Composite Structures,  Vol. 241, (2020), 112136. doi:  10.1016/j.compstruct.2020.112136
13.   Hiremath, M.M., Sen, B., Prusty, R.K. and Ray, B.C., "Influence of loading rate on adhesively bonded tin-glass/epoxy single lap joint", Materials Today: Proceedings,  (2020). doi: 10.1016/j.matpr.2020.02.406
14.   Yousefsani, S.A., Tahani, M. and Selahi, E., "Analytical solution of stress field in adhesively bonded composite single-lap joints under mechanical loadings", International Journal of Engineering, Transactions C: Aspects,  Vol. 27, No. 3, (2014), 475-486. doi: 10.5829/idosi.ije.2014.27.03c.16
15.   Miles, R.N. and Reinhall, P., "An analytical model for the vibration of laminated beams including the effects of both shear and thickness deformation in the adhesive layer",  Vol. 108, No. 1, (1986). doi: 10.1115/1.3269304
16.   Ko, T.-C., Lin, C.-C. and Chu, R.-C., "Vibration of bonded laminated lap-joint plates using adhesive interface elements", Journal of Sound and Vibration,  Vol. 184, No. 4, (1995), 567-583. doi:10.1006/jsvi.1995.0334
17.   Chien-Chang, L. and Yee-Shown, L., "A finite element model of single-lap adhesive joints", International Journal of Solids and Structures,  Vol. 30, No. 12, (1993), 1679-1692.
18.   Saito, H. and Tani, H., "Vibrations of bonded beams with a single lap adhesive joint", Journal of Sound and Vibration,  Vol. 92, No. 2, (1984), 299-309. doi:10.1016/0022-460X(84)90563-7
19.   Praveen, G. and Reddy, J., "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", International Journal of Solids and Structures,  Vol. 35, No. 33, (1998), 4457-4476. doi:10.1016/S0020-7683(97)00253-9
20.   Loy, C., Lam, K. and Reddy, J., "Vibration of functionally graded cylindrical shells", International Journal of Mechanical Sciences,  Vol. 41, No. 3, (1999), 309-324. doi:10.1016/S0020-7403(98)00054-X
21.   Hamdan, A.I., "Stress concentration factors (SCFS) in circular hollow section chs-to-h-shaped section welded t-joints under axial compression", Civil Engineering Journal,  Vol. 5, No. 1, (2019), 33-47. doi: 10.28991/cej-2019-03091223
22.   Ettefagh, M.H., Naraghi, M. and Towhidkhah, F., "Position control of a flexible joint via explicit model predictive control: An experimental implementation", Emerging Science Journal,  Vol. 3, No. 3, (2019), 146-156. doi: 10.28991/esj-2019-01177
23.   Balamuralikrishnan, R. and Saravanan, J., "Finite element analysis of beam–column joints reinforced with gfrp reinforcements", Civil Engineering Journal,  Vol. 5, No. 12, (2019), 2708-2726. doi: 10.28991/cej-2019-03091443
24.   Döner, A., "Comparison of corrosion behaviors of bare ti and TiO2", Emerg Sci J,  Vol. 3, No. 4, (2019), 235-240. doi: 10.28991/esj-2019-01185
25.   Cheng, S., Chen, D. and Shi, Y., "Analysis of adhesive-bonded joints with nonidentical adherends", Journal of Engineering Mechanics,  Vol. 117, No. 3, (1991), 605-623. doi: 10.1061/(ASCE)0733-9399(1991)117:3(605)
26.   Chen, D. and Cheng, S., "Stress distribution in plane scarf and butt joints",  Vol. 57, No. 1, (1990), 78-83.  doi:10.1115/1.2888327
27.   Sancaktar, E. and Nirantar, P., "Increasing strength of single lap joints of metal adherends by taper minimization", Journal of Adhesion Science and Technology,  Vol. 17, No. 5, (2003), 655-675. doi:10.1163/156856103321340796
28.   Hou, X., Kanani, A.Y. and Ye, J., "Double lap adhesive joint with reduced stress concentration: Effect of slot", Composite Structures,  Vol. 202, No., (2018), 635-642. doi: 10.1016/j.compstruct.2018.03.026