Generation Process and Performance Evaluation of Engineered Microsphere Agarose Adsorbent for Application in Fluidized-bed Systems

Document Type : Original Article


1 Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran

2 Nanotechnology Research Institute, Babol Noshirvani University of Technology, Babol, Iran

3 Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies (AUSMT), Amol, Iran


In this research, the generation process of engineered microsphere agarose adsorbent has been explained that has surfaces with different active sites to adsorb protein nanoparticles into the fluidized-bed system. Also, excellent selectivity of protein nanoparticles, high adsorption capacity, and fast equilibrium rate through the eco-friendly polymeric adsorbents were vital aims in here. Hence, agarose as a cheap, and abundant natural polymer, with a ferromagnetic condenser, and dye-ligand adsorbents, were employed to generate the engineered microsphere agarose adsorbent. Then, the performance of produced adsorbents was evaluated in the batch and fluidized-bed system. Scanning electron microscopy, atomic force microscopy, and optical microscope were used. Results showed the shape of adsorbents is spherical, with the size distribution range of 50-250 µm, the porosity of around 90%, and the wet density of 2.6 g/mL. Then, to compare the performance of the engineered adsorbents in a fluidized-bed system, the dye ligand was immobilized on the Streamline™. The obtained results were compared at the same conditions. In batch adsorption tests, the results of lactoferrin nanoparticle adsorption were shown higher dynamic binding capacity with engineered microsphere agarose adsorbents. Also, the results demonstrated that more than 75% of the adsorption process occurred in the first half-hour, which is a very suitable time for a fluidized-bed system. Also, adsorption equilibrium data were evaluated with isothermal adsorption models, and Langmuir’s model suits the data, and the maximum of adsorption was close to 45.3 mg/mL adsorbent. The fluidized-bed adsorption tests showed that engineered adsorbents gained a sound breakthrough performance at high flow velocity and upper dynamic binding capacity compared to commercial adsorbents. The dynamic binding capacity at 10% breakthrough achieved 71% of the flooded adsorption process at the major fluid velocity of 348 cm/h, so the engineered adsorbent has been proved the good potential for use in high flow rate fluidized-bed systems.


1.     Wang, P., Dai, J., Ma, Y., Chen, L. and Pan, J., "Fabrication and evaluation of aminoethyl benzo-12-crown-4 functionalized polymer brushes adsorbents formed by surface-initiated atrp based on macroporous polyhipes and postsynthetic modification", Chemical Engineering Journal,  Vol. 380,  (2020), 122495.
2.     Shahavi, M.H., Hosseini, M., Jahanshahi, M. and Najafpour Darzi, G., "Optimization of encapsulated clove oil particle size with biodegradable shell using design expert methodology", Pakistan Journal of Biotechnology,  Vol. 12, (2015), 149-160.
3.     Arahman, N., Fitri, R.A., Wirakusuma, A., Fahrina, A. and Bilad, M.R., "Adsorption performance of low-cost java plum leaves and guava fruits as natural adsorbents for removal of free fatty acids from coconut oil", International Journal of Engineering, Transactions A: Basics,  Vol. 32, No. 10, (2019), 1372-1378. doi: 10.5829/ije.2019.32.10a.06.
4.     Vesali‐Naseh, M., Barati, A. and Vesali Naseh, M.R., "Efficient copper removal from wastewater through montmorillonite‐supported hydrogel adsorbent", Water Environment Research,  Vol. 91, No. 4, (2019), 332-339. doi: 10.1002/wer.1047.
5.     Pérez Quiñones, J., Brüggemann, O., Kjems, J., Shahavi, M.H. and Peniche Covas, C., "Novel brassinosteroid-modified polyethylene glycol micelles for controlled release of agrochemicals", Journal of Agricultural and Food Chemistry,  Vol. 66, No. 7, (2018), 1612-1619. doi: 10.1021/acs.jafc.7b05019.
6.     Mofidian, R., Barati, A., Jahanshahi, M. and Shahavi, M.H., "Fabrication of novel agarose–nickel bilayer composite for purification of protein nanoparticles in expanded bed adsorption column", Chemical Engineering Research and Design,  Vol. 159, (2020), 291-299. doi: 10.1016/j.cherd.2020.03.024.
7.     Mofidian, R., Barati, A., Jahanshahi, M. and Shahavi, M.H., "Agar-zinc adsorbent synthesis with nano cavities to absorb protein nanoparticles", in The 6th International Conference on Composites Characterization, Fabrication and Application (CCFA-6), Iran University of Science and Technology, Tehran, Iran. (2018 of Conference).
8.     Hanish, H.H.H., Edrees, S.J. and Shukur, M.M., "The effect of transition metals incorporation on the structural and magnetic properties of magnesium oxide nanoparticles", International Journal of Engineering, Transactions A: Basics,  Vol. 33, No. 4, (2020), 647-656. doi: 10.5829/ije.2020.33.04a.16.
9.     Alizadeh, M., Hosseinzadeh, K., Shahavi, M. and Ganji, D., "Solidification acceleration in a triplex-tube latent heat thermal energy storage system using v-shaped fin and nano-enhanced phase change material", Applied Thermal Engineering,  Vol. 163, (2019), 114436. doi: 10.1016/j.applthermaleng.2019.114436.
10.   Rad, A.S., Samipour, V., Movaghgharnezhad, S., Mirabi, A., Shahavi, M.H. and Moghadas, B.K., "X12n12 (x= al, b) clusters for protection of vitamin c; molecular modeling investigation", Surfaces and Interfaces,  Vol. 15, (2019), 30-37. doi: /10.1016/j.surfin.2019.02.001.
11.   Mashhadzadeh, A.H., Fathalian, M., Ahangari, M.G. and Shahavi, M.H., "Dft study of ni, cu, cd and ag heavy metal atom adsorption onto the surface of the zinc-oxide nanotube and zinc-oxide graphene-like structure", Materials Chemistry and Physics,  Vol. 220, (2018), 366-373. doi: 10.1016/j.matchemphys.2018.09.016.
12.   Shahavi, M.H., Hosseini, M., Jahanshahi, M., Meyer, R.L. and Darzi, G.N., "Evaluation of critical parameters for preparation of stable clove oil nanoemulsion", Arabian Journal of Chemistry,  Vol. 12, No. 8, (2019), 3225-3230. doi: 10.1016/j.arabjc.2015.08.024.
13.   Hosseini, M. and Shahavi, M.H., "Electrostatic enhancement of coalescence of oil droplets (in nanometer scale) in water emulsion", Chinese Journal of Chemical Engineering,  Vol. 20, No. 4, (2012), 654-658. doi: 10.1016/S1004-9541(11)60231-0.
14.   Lashkenari, A.S., Najafi, M., Peyravi, M., Jahanshahi, M., Mosavian, M.T.H., Amiri, A. and Shahavi, M.H., "Direct filtration procedure to attain antibacterial tfc membrane: A facile developing route of membrane surface properties and fouling resistance", Chemical Engineering Research and Design,  Vol. 149, (2019), 158-168. doi: 10.1016/j.cherd.2019.07.003.
15.   Shahavi, M.H., Hosseini, M., Jahanshahi, M., Meyer, R.L. and Darzi, G.N., "Clove oil nanoemulsion as an effective antibacterial agent: Taguchi optimization method", Desalination and Water Treatment,  Vol. 57, No. 39, (2016), 18379-18390. doi: 10.1080/19443994.2015.1092893.
16.   Hosseini, M., Shahavi, M.H. and Yakhkeshi, A., "Ac & dc-currents for separation of nano-particles by external electric field", Asian Journal of Chemistry,  Vol. 24, No. 1, (2012), 181-184.
17.   Kazemeini, H., Azizian, A. and Shahavi, M.H., "Effect of chitosan nano-gel/emulsion containing bunium persicum essential oil and nisin as an edible biodegradable coating on escherichia coli o157:H7 in rainbow trout fillet", Journal of Water and Environmental Nanotechnology,  Vol. 4, No. 4, (2019), 343-349. doi: 10.22090/jwent.2019.04.008.
18.   Driessen, R.T., van der Linden, J.J.Q., Kersten, S.R.A., Bos, M.J. and Brilman, D.W.F., "Characterization of mass transfer in a shallow fluidized bed for adsorption processes: Modeling and supporting experiments", Chemical Engineering Journal,  Vol. 388, (2020), 123931. doi: 10.1016/j.cej.2019.123931.
19.   Shahavi, M., Jahanshahi, M., Najafpour, G., Ebrahimpour, M. and Hosenian, A., "Expanded bed adsorption of biomolecules by nbg contactor: Experimental and mathematical investigation", World Applied Sciences Journal,  Vol. 13, No. 2, (2011), 181-187.
20.   Taheri, E.S., Jahanshahi, M., Hamed Mosavian, M.T. and Shahavi, M.H., "Investigation of hydrodynamic parameters in a novel expanded bed configuration: Local axial dispersion characterization and an empirical correlation study", Brazilian Journal of Chemical Engineering,  Vol. 29, No. 4, (2012), 725-739. doi: 10.1590/S0104-66322012000400005.
21.   Mofidian, R., Shahavi, M.H., Barati, A. and Jahanshahi, M., "Engineering mechanisms for protein nanoparticles adsorption", in The 2th International Conference on Modern Technologies in Sciences, Mazandaran, Iran. (2019 of Conference), 866-871.
22.   Asadpour, R., Sapari, N.B., Hasnain Isac, M. and Kakooei, S., "Further study of adsorption of crude oils onto acetylated corn silk and its kinetics and equilibrium isotherm", International Journal of Engineering, Transactions B: Applications,  Vol. 32, No. 2, (2019), 229-235. doi: 10.5829/ije.2019.32.02b.07.
23.   Najafpour, G.D., Shahavi, M.H. and Neshat, S.A., "Assessment of biological hydrogen production processes: A review", IOP Conference Series: Earth and Environmental Science,  Vol. 36, (2016), 012068. doi: 10.1088/1755-1315/36/1/012068.
24.   Askari, M., Salehi, E., Ebrahimi, M. and Barati, A., "Application of breakthrough curve analysis and response surface methodology for optimization of a hybrid separation system consisting of fixed-bed column adsorption and dead-end depth filtration", Chemical Engineering and Processing-Process Intensification,  Vol. 143, (2019), 107594. doi: 10.1016/j.cep.2019.107594.
25.   Shahavi, M.H., Najafpour, G.D. and Jahanshahi, M., "Hydrodynamic behaviour and biochemical characterization of a simple custom expanded bed column for protein purification", African Journal of Biotechnology,  Vol. 7, No. 23, (2008), 4334-4344.
26.   Aminayi, P., Allaedini, G. and Tasirin, S.M., "Hydrodynamic studies of fluidized bed chemical vapor deposition reactors to produce carbon nano tubes via catalytic decomposition over co/pd mgo", International Journal of Engineering, Transactions C: Aspects,  Vol. 28, No. 12, (2015), 1693-1701. doi: 10.5829/idosi.ije.2015.28.12c.01.
27.   Jahanshahi, M. and Shahavi, M.H., Advanced downstream processing in biotechnology, in Biochemical engineering and biotechnology, G. Najafpour Darzi, Editor. 2015, Elsevier. 495-526.
28.   Asghari, F., Jahanshahi, M. and Ghoreyshi, A.A., "Preparation and characterization of agarose–nickel nanoporous composite particles customized for liquid expanded bed adsorption", Journal of Chromatography A,  Vol. 1242, (2012), 35-42. doi: 10.1016/j.chroma.2012.04.019.
29.   Rezvani, A., Jahanshahi, M. and Asghari, F., "Characterization of a novel agarose–nickel composite matrix for protein nanoparticles affinity chromatography in expanded bed", Chromatographia,  Vol. 77, No. 19-20, (2014), 1267-1274. doi: 10.1007/s10337-014-2727-4.
30.   Mohsenkhani, S., Jahanshahi, M. and Rahimpour, A., "Cross-linked κ-carrageenan polymer/zinc nanoporous composite matrix for expanded bed application: Fabrication and hydrodynamic characterization", Journal of Chromatography A,  Vol. 1408, (2015), 178-186. doi: 10.1016/j.chroma.2015.07.018.
31.   Abatari, M.N., Emami, M.R.S., Jahanshahi, M. and Shahavi, M.H., "Superporous pellicular κ-carrageenan–nickel composite beads; morphological, physical and hydrodynamics evaluation for expanded bed adsorption application", Chemical Engineering Research and Design,  Vol. 125, (2017), 291-305. doi: 10.1016/j.cherd.2017.07.012.
32.   Shahavi, M.H., Najafpour, G. and Jahanshahi, M., "Design and fabrication of expanded bed adsorption column (named nbg-nano bio group) for nanobioproducts separation",  Patent no. IR49023, 2008, Iran.
33.   Shahavi, M.H., Jahanshahi, M., Najafpour, G.D., Ebrahimpour, M. and Hosenian, A.H., "Expanded bed adsorption of biomolecules by nbg contactor: Experimental and mathematical investigation", World Applied Sciences Journal,  Vol. 13, No. 2, (2011), 181-187.
34.   Khavarpour, M., "Adsorption of malachite green from aqueous solution by nanozeolite clinoptilolite: Equilibrium, kinetic and thermodynamic studies", International Journal of Engineering, Transactions A: Basics, Vol. 31, No. 1, (2018), 1-11. doi: 10.5829/ije.2018.31.01a.01.
35.   Jafari, B., Khatamnejad, H., Shahavi, M.H. and Domeyri Ganji, D., "Simulation of dual fuel combustion of direct injection engine with variable natural gas premixed ratio", International Journal of Engineering, Transactions C: Aspects,  Vol. 32, No. 9, (2019), 1327-1336. doi: 10.5829/ije.2019.32.09c.14.
36.   Alzeyadi, A., Al-Ansari, N., Laue, J. and Alattabi, A., "Study of biomass bottom ash efficiency as phosphate sorbent material", Civil Engineering Journal,  Vol. 11, No. 5, (2019), 2392-2401. doi: 10.28991/cej-2019-03091419.
37.   Jaafar, J., Goh, P.S., Lau, W.J., Shahrin, S. and Fauzi Ismail, A.F., "Adsorptive removal of cr(vi) and cu(ii) ions from water solution using graphene oxide-manganese ferrite (gmf) nanomaterials", International Journal of Engineering, Transactions B: Applications,  Vol. 31, No. 8, (2018), 1341-1346. doi: 10.5829/ije.2018.31.08b.24.
38.   Jahanshahi, M., Najafpour, G., Ebrahimpour, M., Hajizadeh, S. and Shahavi, M.H., "Evaluation of hydrodynamic parameters of fluidized bed adsorption on purification of nano‐bioproducts", physica status solidi c,  Vol. 6, No. 10, (2009), 2199-2206. doi: 10.1002/pssc.200881737.
39.   Chu, K.H., "Breakthrough curve analysis by simplistic models of fixed bed adsorption: In defense of the century-old bohart-adams model", Chemical Engineering Journal,  Vol. 380, (2020), 122513. doi: 10.1016/j.cej.2019.122513.
40.   Mofidian, R., Barati, A., Jahanshahi, M. and Shahavi, M.H., "Optimization on thermal treatment synthesis of lactoferrin nanoparticles via taguchi design method", SN Applied Sciences,  Vol. 1, No. 11, (2019), 1339. doi: 10.1007/s42452-019-1353-z.
41.   Theingi, M., Tun, K.T. and Aung, N.N., "Preparation, characterization and optical property of lafeo3 nanoparticles via sol-gel combustion method", SciMedicine Journal,  Vol. 1, No. 3, (2019), 151-157. doi: 10.28991/SciMedJ-2019-0103-5.
42.   Bhatti, Z.A., Qureshi, K., Maitlo, G. and Ahmed, S., "Study of pan fiber and iron ore adsorbents for arsenic removal", Civil Engineering Journal,  Vol. 6, No. 3, (2020), 548-562. doi: 10.28991/cej-2020-03091491.
43.   Palash, M.L., Jahan, I., Rupam, T.H., Harish, S. and Saha, B.B., "Novel technique for improving the water adsorption isotherms of metal-organic frameworks for performance enhancement of adsorption driven chillers", Inorganica Chimica Acta,  Vol. 501, (2020), 119313. doi: 10.1016/j.ica.2019.119313.
44.   Seliem, M.K., Barczak, M., Anastopoulos, I. and Giannakoudakis, D.A., "A novel nanocomposite of activated serpentine mineral decorated with magnetic nanoparticles for rapid and effective adsorption of hazardous cationic dyes: Kinetics and equilibrium studies", Nanomaterials,  Vol. 10, No. 4, (2020), 684. doi: 10.3390/nano10040684.