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A B S T R A C T  
 

 

Electric wheelchair is one of the equipment to be used by the incapacitated and disable people. 

Constant exposure to vibration affects human comfort and health. Reducing the vibrations 

transmitted to the human body is important in the electric wheelchair design and becomes a 
healthcare industry demand. This paper deals with the study on vibration control of the electric 

wheelchair suspension system. A generalized model of the electric wheelchair suspension, including 

the biodynamic model of seated human body is presented. In order to achieve optimal suspension 
performance, an active control for wheelchair suspension is designed based on H-infinity control 

criterion. Numerical simulations are carried out to demonstrate the effectiveness of the proposed 

wheelchair suspension system. The simulation results show that the proposed control system can 
effectively attenuate the vibration amplitude and improve the wheelchair suspension performance. 

This control system could be used for electric wheelchair design and assist with improving human 

comfort. 

doi: 10.5829/ije.2020.33.08b.21 

 

1. INTRODUCTION1 
 
Numerous research studies have focused on the ride 

comfort of vehicles which has effects on driver fatigue 

and health. Suspension systems are designed to reduce 

the transmission of vibration from road surface 

disturbances. Semi active and active suspension systems 

have been more attractive for researchers during the last 

several decades [1-10]. 

To minimize vertical vibration transmitted to a driver, 

an active seat suspension system is developed by Alfadhli 

et al. [7]. Performance of the active suspension is 

evaluated using experimental and simulation. 

Moghadam-Fard et al. [8] presented an active control of 

quarter car suspension system based on adaptive neuro 

fuzzy (ANFIS). Moaaz et al. [9] used fuzzy and PID 

control approach to investigate the performance of 

automotive active suspension system. It was found that 

controlled suspension can provide much better 

performance in the ride comfort compared with 

uncontrolled system. In the study by Nouby et al. [10] a 

quarter vehicle active suspension control model is 
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developed. Suspension model controlled using H-infinity 

control approach . 

Study performed in these literature [11-14] showed 

that human body is considered mainly as a rigid mass 

mounted on the suspension system. Human body exposed 

to vibrations is a complex dynamic system. An 

investigation of the dynamic response of human body 

helps to a better understanding of the effects of vibration 

on human comfort, and is important for the analysis and 

improvement of suspension system performance.  

Modeling and analysis of the dynamic response of 

human body are interesting topics for research. To study 

the dynamic response of human body, many biodynamic 

models have been developed. These models could be 

mainly classified as lumped parameter, multi-body, and 

finite element models [15, 16]. For example, using beam, 

spring and mass elements, a 2-DOF model for human 

body is presented by Griffin [17]. Wei et al. [18] used two 

models of human body, 1-DOF and 2-DOF, to investigate 

the vibration transmissibility. It was observed that 2-DOF 

model provided better prediction. Tewari et al. [19] 

developed and investigated a 3-DOF model of tractor seat 
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suspension. A dynamic model for a seated human body 

in a sitting posture is presented by Abbas et al. [20]. The 

vibration transmissibility and dynamic responses are 

evaluated. In the study conducted by Aisyah et al. [21], 

the suspensions seat transmissibility and seat effective 

amplitude transmissibility values for a seated human 

body exposed to vibration in tractor are investigated. 

Optimization based on genetic algorithms is used by 

Baumal et al. [22] to design and control an active 

suspension system. In the study by Desai et al. [23] a 2-

dimensional, 20 DOF sitting posture multi-body model 

for seated human is developed, and model parameters are 

optimized by using genetic algorithm. Dong et al. [24] 

developed a 3-dimensional finite element model of the 

body-seat system to study the effect of sitting posture and 

seat on the dynamic response of human body . 

Electric wheelchair is one of the equipment to be used 

by the incapacitated and disable people. The effects of 

vibration exposure and also longed wheelchair riding on 

user discomfort have been approved. Minimizing the 

vibrations transmitted to the wheelchair user is important 

in the electric wheelchair design and becomes a 

healthcare industry demand. It can be addressed through 

the suspension system design [25-27]. For example, 

Garcia-Mendez et al. [26], evaluated vibration exposure 

to wheelchair user for different types of wheelchair 

frames. They determined the effect of wheelchair 

suspension in reducing vibration transmitted to the body. 

In a study by Cooper et al. [27], vibrations in manual 

wheelchairs with and without suspension are 

investigated. 

A thorough survey of literature indicates that 

although the wheelchair suspension performance is 

investigated, active control of wheelchair suspension and 

also the biodynamic response of wheelchair user are not 

considered. The purpose of this study is to apply 

suspension system in the design of wheelchair. In order 

to control and improve the wheelchair performance, 

active control of wheelchair suspension model by 

considering the biodynamic model of seated human body 

is proposed. Then, H-infinity static output feedback 

controller is designed to control and improve the 

wheelchair performance  . 

This paper is organized as follows. The model of a 

wheelchair suspension, including the seated human 

model, is described in section 2. Based on H-infinity 

control technique, active controller design is formulated. 

Section 3 presents the simulation results and controller 

performance evaluations. Finally, conclusions are given 

in section 4 . 
 
 

2. MODEL DESCRIPTION AND CONTROLLER 
DESIGN 
 

2. 1. Biodynamic Model of Human Body           human 

body can be modeled as several rigid mass connected by 

sets of spring and damper. In this study, a 1-DOF model 

of human body is employed, proposed by Wei and Griffin 

in 1998 [18]. Analytical studies and experimental 

validations have shown that this model is suitable for 

studying the dynamic response of human body. In this 

model, the seated person is composed of a support 

structure "mb" and a sprung mass "mh", connected by 

spring, "kh", and damper, "ch ". Schematic of this model 

is depicted in Figure 1. 

 

2. 2. Wheelchair and Suspension model       A 2-

DOF active suspension model is employed to investigate 

the dynamic response and control of electric wheelchair. 

This suspension system schema is shown in Figure 2. 

Sprung mass, ms, is the mass of wheelchair chassis and 

seat. Unsprung mass, mw, represents the wheel assembly 

mass. Tire is simulated by a spring with stiffness, kt, and 

it is assumed that it always contacts with the road surface. 

 

 

 
Figure 1. The biodynamic model of human body proposed 

by Wei et al. [13] 

 

 

 
Figure 2. Wheelchair suspension model 
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ks and cs are stiffness and damping of the passive 

suspension component. The controller output U(t), 

represents the input control force can be generated by the 

actuator . 

The dynamic equation for the wheelchair suspension 

and human body can be derived as: 

2

2
( ) ( )h h s

h h h s h

d z dz dz
m k z z c

dt dtdt
= − − − −  (1-a) 

2

2
( ) ( ) ( )...

( ) ( )

s h s
b s h h s h

s w
s s t s

d z dz dz
m m k z z c

dt dtdt

dz dz
k z z c U

dt dt

+ = − + −

− − − − +

 (1-b) 

2

2
( ) ( )...

( )

w s w
w s s w s

t w r

d z dz dz
m k z z c

dt dtdt

k z z U

= − + −

− − −

 (1-c) 

The state variables can be defined as: 1( ) ( )h sx t z z= −

, 2( ) /hx t dz dt= , 3( ) ( )s wx t z z= − , 4( ) /sx t dz dt= , 

5( ) wx t z= , 6( ) /wx t dz dt= . ( ) rw t z=  represents road 

surface disturbance. The state space model for this 

suspension system can be written as: 

1 2x Ax B w B u= + +  (2) 

where: 
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2. 3. Controller Design           To improve the 

suspension performance, this section is devoted to the 

controller design for the wheelchair suspension system. 

A static output feedback controller is considered as: 

U=Ky, where, y is the input of the controller. K and U are 

the controller gain matrix and the output of the controller, 

respectively. Measured signals feedback to the controller. 

The controller sends a signal to the actuator to generate a 

compensation force to eliminate vibration (Figure 2). 

Schematic of this control system is shown in Figure 3 

[28]. The suspension deflection and also the seat and 

upper body velocity are measured variables which are 

selected as input variable to the controller. So, the control 

law can be expressed as: 

1 2 3( )

s w

s

h

z z

U t ky k k k z

z

− 
 

= =     
  

 (3) 

For this suspension controller design, ride comfort 

and road holding are the main desired objective [6]. For 

this purpose, the control objectives are defined as: hz , sz  

and, w rz z− , which are the controlled output, Z. Now, by 

considering the dynamic Equation (1), the control model 

for the wheelchair suspension can be described as: 

1 2
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α1, α2, and α3 are the weighting coefficients which 

represent the trade-off between the control objectives. 

Transfer function for the state space model of Equation 

(4) is obtained as: 

( )
11 11 12

1 2
2 21 22

11 12

21 22

( )
C D D

P s sI A B B
C D D

P P

P P

−   
= − +     
   

 
=  
  

 (5) 

For this static output feedback controller, the closed 

loop transfer function from the disturbance input w(t) to 

the controlled output Z, can be obtained as : 

( )
1

11 12 22 21( )zwT s P P K I P K P
−

= + −  (6) 

 

 

 
Figure 3. Schematic of the control system [28] 
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The active suspension controller is implemented by 

H-infinity control technique. The control objective is to 

determine a controller gain matrix K=[k1  k2  k3], in a way 

the system would be stable and the H-infinity norm of the 

closed loop transfer function ( )zwT j


, could be 

minimized. In practice, the actuator force is limited by its 

physical capability and should be considered in controller 

design. This limitation can be expressed as: maxK K

 . 

Therefore, the H-infinity controller design problem for 

suspension can be expressed as the following constrained 

optimization problem [28, 29]: 

1 2 3

max

min( ( )

. . : ( ) &

zw

zw

T j k k k k

s t T s is stable k k






=   


 (7) 

This multi-objective minimization problem is 

formulated in MATLAB and solved by using particle 

swarm optimization (PSO) algorithm [30, 31]. 

 
 

3. SIMULATION RESULTS  
 

In this section, in order to demonstrate the proposed 

controller performance, numerical simulations are 

conducted. The simulation parameters of the wheelchair 

suspension and human are listed in Table 1. In this 

simulation, the weighting coefficients and controller gain 

limitation for the actuator are considered as: α1=α2=2, 

α3=1, 200K

  and 3000K


 , respectively. 

Optimization is performed using the PSO algorithm. H-

infinity norms of transfer function are obtained as: 

( ) 10376zwT j

=  and ( ) 5467.7zwT j


= . Also, the 

optimal controller gains are obtained as: 

,1

,2

200 200 200 . 200

142.48 3000 3000 . 3000

opt

opt

K st K

K st K





= − −   

= −   
 (8) 

The frequency responses of closed loop system 

(active suspension with optimal control gains Kopt,1 and 

Kopt,2) for upper body acceleration, lower body 

acceleration and tire deflection are compared with those 

of open loop system (passive suspension system without 

controller), and are depicted in Figures 4-6, respectively. 

Figures 4 and 5 present the frequency responses of the 

upper and lower body acceleration, respectively. As it 

can be seen, the proposed control system reduces body 

acceleration more effectively compared to the 

uncontrolled system especially in the resonance regions 

(Around 2.63, and 10.5 Hz).  

In the resonance region (Around 10.5 Hz), the 

controller attenuates the upper body acceleration around 

15% for controlled system with control gain Kopt,1, and 

also 52% for system with higher control gain Kopt,2. Also, 

about 16 and 56% amplitude reduction for the lower body 

acceleration is observed, compared with the closed loop 

system. As it can be seen, the best control performance 

has been achieved by using the optimal control gain 

Kopt,2. As expected, the control performance can be 

improved by using the higher control gain. 

Figure 6 presents frequency responses of tire 

deflection. At resonance frequencies, around 2.63, and  

 

 
TABLE 1. Parameters of the wheelchair and human body 

Value Unit Parameter 

43.4 kg mh 

8.8 kg mb 

20 kg ms 

30 kg mw 

1485 N.s/m ch 

150 N.s/m cs 

44130 N/m kh 

31000 N/m ks 

100000 N/m kt 

 

 

 
Figure 4. Frequency response of upper body acceleration 

 

 

 
Figure 5. Frequency response of lower body acceleration 
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Figure 6. Frequency response of tire deflection 

 

 

10.5 Hz, the active controller provides a significant 

vibration reduction. Comparing the controlled and 

uncontrolled system shows that the maximum amplitudes 

are attenuated 11 and 52% around the resonance (10.5 

Hz). The maximum values of frequency responses for 

open loop and closed loop system are also listed in Table 

2. The simulation results presented in Figures 4-6 and 

also Table 2 indicate that active suspension performance 

can be substantially improved by employing the 

proposed control strategy . 

Furthermore, the optimal control gains are obtained 

for five values of the controller gain limitation. For 

obtained optimal control gains, the frequency responses 

of the upper body acceleration and also tire deflection are 

shown in Figures 7(a) and 7(b). As expected, the control 

performance can be improved by using the higher control 

gain. It is clear that the actuator force is limited by its 

physical capability and also increasing the controller gain 

more than a limit does not produce significant difference 

in optimal solution (see controlled system with ‖K‖∞≤ 

5000 and ‖K‖∞≤ 10000). As a result, increasing the 

controller gain limitation, only to a given limit, is 

reasonable and of engineering justification. 

Also, the simulations for controlled system with 

control gain Kopt,2 are performed in the time domain under 

random road excitation displacement. The road 

excitation displacement is shown in Figure 8. The 

simulation results for upper body acceleration, lower 

body acceleration and tire deflection are illustrated in 

Figures 9-11, respectively. It is seen from these figures 

that the proposed control system significantly reduces the 

vibration amplitude compared with the uncontrolled 

suspension system. The Root Mean Square (RMS) values 

of the time domain responses under the random road 

disturbance are also listed in Table 3. The decrease in the 

RMS values of the responses for active suspension is 

observed. Obviously, the proposed control system is 

effective and can provide much better performance 

compared to uncontrolled system. 

 

 

TABLE 2. The maximum values of the frequency responses for controlled and uncontrolled system 

Improvement 

% 
Controlled system 

with Kopt,1 

Improvement 

% 

Controlled system 

with Kopt,1 

Uncontrolled 

system 
 

52 3.07e3 15 5.44e3 6.38e3 Upper body acceleration (m/s2) 

56 4.53e3 16 8.7e3 1.04e4 Lower body acceleration (m/s2) 

52 3.01 11 5.57 6.26 Tire deflection (m) 

 

 
.

 
Figure 7. Frequency responses for different controller gain limitations. (a): upper body acceleration, and (b): tire deflection 
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Figure 8. Road excitation displacement 

 

 

 

 
Figure 9. Time response of upper body acceleration under road excitation displacement 

 

 

 

 
Figure 10. Time response of lower body acceleration under road excitation displacement 
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Figure 11. Time response of tire deflection under road excitation displacement 

 

 
TABLE 3. RMS values of the wheelchair suspension response 

under road excitation displacement 

Improvement 

% 

Controlled 

System 

Uncontrolled 

System 
 

32 26.58 39.41 
Upper Body 

Acceleration  

27 41.86 57.22 
Lower Body 

Acceleration 

11 0.042 0.047 Tire Deflection 

 

 
4. CONCLUSION  
 
In this paper, vibration control of an electric wheelchair 

suspension system has been evaluated. A 1-DOF model 

of human body has been employed in the design of active 

wheelchair suspension. A model of the wheelchair 

suspension, including the biodynamic model of seated 

human body presented. The static output feedback 

controller based on H-infinity control criterion was 

designed to control and improve the wheelchair 

performance. It has been demonstrated that the control 

system proposed in this study has significantly 

suppressed the vibration amplitude and improved the 

suspension performances. Results of this study could 

potentially help in the electric wheelchairs design and 

assist with improving ride quality and wheelchairs user 

health. 
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Persian Abstract 

 چکیده 
توسط معلولین و افراد ناتوان مورد استفاده قرار می گیرد. قرار گرفتن مداوم بدن انسان در معرض لرزش همواره به عنوان  ی است که  تجهیزات پرکاربردویلچر برقی از جمله  

ویلچر داشته    ی در طراحین کننده و مهم  نقشی تعیکاهش ارتعاش منتقل شده به بدن انسان  یک عامل آزار دهنده مطرح می شود که تاثیراتی منفی بر راحتی و سلامت انسان دارد.  

در این پژوهش، به منظور بهبود عملکرد ویلچرهای برقی، کنترل ارتعاش در سیستم تعلیق ویلچر و با  .  شده است  لیتبد  یبهداشت  ی مراقبت ها  حوزه  ی مهم درتقاضا  کیبه  و  

و مورد ارزیابی    ی طراح  H∞کنترل    اریبر اساس مع   ی، کنترل فعاللچریو  قی تعل  ستمیسدر    نه یعملکرد بهبه    ی ابیدست  ی برادرنظر گرفتن مدل بیودینامیکی بدن انسان ارائه شده است.  

می شود.   نتایج شبیه سازی نشان می دهد که سیستم کنترلی پیشنهادی به طور موثر سبب کاهش پاسخ ارتعاشی بدن و درنتیجه بهبود عملکرد سیستم تعلیق.  استقرارگرفته

 سواری پیشهاد می شود. یبهبود راحت به منظور های برقیلچریو قیتعل ستمیس ی طراح در یکنترل ستمیس نی ابکارگیری 
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