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A B S T R A C T  
 

Investigating the behavior of the box-shaped column panel zone has been one of the major concerns of 
scientists in the field.  In the American Institute of Steel Construction the shear capacity of I-shaped 

cross- sections with low column thickness is calculated. This paper determines the shear capacity of 

panel zone in steel columns with box-shaped cross-sections by using artificial neural network (ANN) 
and genetic algorithm (GA). It also compares ABAQUS finite element software outputs and AISC 

relations. Therefore, neural networks were trained using parametric information obtained from 510 

connection models in ABAQUS software. The results show that the predicted shear capacity of the NN 
and the GA in comparison with the AISC relations use a wide range of all effective parameters in the 

calculation of the shear capacity of panel zone. Therefore, the use of artificial intelligence can be a good 

choice. Finally, the GA, along with optimization of a mathematical relation, has been able to minimize 
the error in determining the shear capacity of panel zones of steel-based columns, even at high column 

thicknesses. 

doi: 10.5829/ije.2020.33.08b.09 
 

 
1. INTRODUCTION1 
 
In recent decades, connections have been one of the most 

important concerns of scientists in the field. The major 

differences of recent approaches are paying more 

attention to the beam-to-column load transfer path and 

ensuring that this load transfer path is safe to the extent 

of the lateral load system behavior. Therefore, this study 

focuses on research and predicts the shear capacity of 

panel zones in steel boxes using NN method. Seismic 

behavior of panel zones has been the focus of numerous 

researchers for a long time. Research has begun in the 

late 1960s and early 1970s. In the last four decades, 

significant changes have been observed in the seismic 

design criteria of panel zones. Over the years, there have 

been many changes to panel zone by laws and guidelines. 

The 2002 AISC seismic criterion stated that the shear 

resistance required by panel zone must be determined by 

testing. In other words, it does not provide a quantitative 
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relationship. However, as a minimum, the shear 

resistance required of panel zone must be determined 

from the sum of bending moments in the column 

resulting from the formation of expected bending 

moments at the points of formation of plastic hinge [1]. 

The 2010 AISC Seismic Code is the latest and the most 

up-to-date version of the seismic design criteria for steel 

structures. In the section on panel zones sections of the 

special bending reinforced frames, no changes were 

considered compared to the 2002 AISC criteria [2]. 

Mansouri et al. [3] proved that the AISC relations 

overestimate in I-shaped columns with relatively thick 

flanges. What seems to be necessary is that the shear 

capacity of panel zone depends primarily on the various 

geometrical parameters of the coupling components and, 

secondly, the AISC relations have acceptable errors for 

I-shaped cross-sections with low thicknesses. However, 

these errors became more pronounced at higher 

thicknesses and box-shaped cross-sections [3]. Today, 
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NNs are used in almost all engineering sciences. NNs, 

also known as ANNs, are one of the learning algorithms 

in "machine learning" that are based on the biological 

concept of NNs. ANNs are the building blocks or 

neurons, very simple computing devices. 

Communication between neurons determines network 

function. The purpose of ANN training is to determine 

the appropriate relationship for solving different 

problems [4]. Many researchers have used ANN to study 

structures, for instance Hartman et al. [5] have 

investigated the use of ANN in assessing different levels 

of structures safety. Elhewy et al. [6] have investigated 

the ability of NNs to predict the failure of structures . 

Optimization techniques include the recently 

developed random search methods. Among the new 

optimization techniques used today to solve many 

different problems are GA (GA), Simulated Annealing 

(SA), Ant Colony and more. Regardless of the type of 

calculation, these methods can be applied at different 

levels of engineering. In these methods, simple 

algorithms are used for complex calculations [7]. Jenkins' 

research [8] is one of the first studies in optimizing 

structures. Adeli [9] also explored the use of NNs to 

improve the responses of GAs to optimization problems. 

Sahoo and Maity [10] used a combination of NN and GA 

to predict structural damage  . 

Khalkhali et al [11] proved that neural networks are 

useful tools to predict the buckling capacity of vertically 

stiffened cylindrical shells. 

Mallela et al [12] dealt with the development of an 

analytical and computationally efficient analysis tool 

using artificial neural networks (ANN) for predicting the 

buckling load of laminated composite stiffened panels 

subjected to in-plane shear loading. The results show that 

the trained neural network can predict the shear buckling 

load of laminated composite stiffened panels accurately 

and will be very useful in optimization applications [12]. 

Abmbres et al. [13] proposed an artificial neural 

network (ANN)-based formula to come up with estimates 

of the shear capacity of one-way reinforced concrete 

slabs under a concentrated load. A step-by-step 

assessment scheme for reinforced concrete slab bridges 

by means of the ANN-based model is also proposed, 

which results in an improvement of the current 

assessment procedures [13] . 

Hoang [14] relied on a piecewise multiple linear 

regression (PMLR) and artificial neural network (ANN) 

approaches to construct a prediction model that can 

approximate the mapping function between the punching 

shear capacity of SFRC flat slabs and its influencing 

factors. The algorithms of gradient descent and 

Levenberg-Marquardt backpropagation were employed 

to train the ANN based prediction models. Experimental 

results showed that SPMLR can deliver prediction 

outcome which was better than those of ANN as well as 

empirical design equations [14].  

Jang et al. [15] reported the magnitudes of fiber optic 

sensor signals were used for estimating the distances 

between each sensor and impact location. Then, through 

the neural network training, the accuracy of estimating 

the distances from the signal magnitudes could be 

enhanced. Triangulation method showed the acceptable 

localization results about the non-trained impact points 

[15] . 

Hedayat et al. [16] were aimed to propose an 

integrated formula developed based on artificial neural 

network to predict the minimum resistance requirement 

of steel moment frames at any performance level and 

desired level of probabilistic response. In addition to the 

simple form of the proposed model, results generally 

indicated that this model was more accurate than the 

other available models [16]. 

In recent decades, due to the widespread use of these 

cross-sections in moment-resisting frame systems, 

investigating the behavior of the box-shaped column 

panel zone has been one of the major concerns of 

scientists in the field. As a rectangular area of column 

web, panel zone is enclosed between continuity plates 

and column flanges and plays an important role in the 

bonding behavior. The shear capacity of this region 

depends on various parameters, such as the geometrical 

dimensions of the beam cross-section, the geometrical 

dimensions of the column cross-section and the thickness 

of continuity plates. In the American Institute of Steel 

Construction (AISC), based on these parameters, the 

shear capacity of I-shaped cross-sections with low 

column thickness is calculated. However, no separate 

relations have been provided to determine the shear 

capacity of panel zone in metal columns with box-shaped 

cross-sections. The error of the AISC relations is 

particularly evident at high thicknesses. This paper 

determines the shear capacity of panel zone in metal 

columns with box-shaped cross-sections with artificial 

neural network (ANN) and genetic algorithm (GA). It 

also compares ABAQUS finite element software outputs 

and AISC relations. The parameters used to determine 

this shear capacity are height, flange thickness, beam and 

column thickness, thickness of continuity plates and axial 

force of the column . 

In this study, an ANN and GA are designed to 

calculate the shear capacity of panel zone-loaded steel 

columns for the purpose of a separate relationship and 

reducing the errors mentioned in the AISC. To achieve 

this goal, first, an extensive parametric study is 

performed on the parameters affecting the performance 

of the connection source by ABAQUS software. These 

parameters include column flange thickness, column web 

thickness, beam flange thickness, column width, height 

of beam and thickness of continuity plates. Then, an 

ANN is designed and trained based on ABAQUS 

software outputs. This network is examined to predict the 

shear capacity of square columns or boxes with low to 
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high thickness ranges. The results are compared with the 

ABAQUS output and the AISC. Then, using the GA, an 

optimal function is determined to predict and calculate 

the shear capacity of the bending steel columns. After 

that, the performance of artificial intelligence in relation 

to the AISC relations is investigated in terms of shear 

capacity of the box-shaped columns with different 

column thicknesses. 

 
 
2.  CALCULATING THE SHEAR CAPACITY OF PANEL 
ZONE 

 
2. 1. Calculating the Shear Capacity of Panel Zones 
in American Institute of Steel Construction (AISC)           
The AISC Relations, based on the Crawinker Relations, 

yielded an acceptable result for relatively thin columns. 

However, for high column flange thicknesses, these 

relations need to be modified. It is important to note that 

the difference in shear capacity of panel zone is due to 

the high thickness and shape of the cross-section, so that 

the column with the box-shaped cross-section is not 

specified in the AISC as separate relation [17]. In recent 

AISC seismic design standards based on the LRFD 

design, the design resistance of panel zones is classified 

as follows, with or without the deformation of panel 

zones depending on the axial force applied to the column 

[2] : 

A) When the deformation effect of panel zones is not 

considered in the frame, Rn is the capacity of panel zones 

as follows: 

(1) 𝑃𝑟 ≤ 0.4𝑃𝑐  𝑅𝑛 = 0.6𝐹𝑦 . 𝑑𝑐 . 𝑡𝑤  

(2) 𝑃𝑟 > 0.4𝑃𝑐  𝑅𝑛 = 0.6F𝑦 .d𝑐 .t𝑤(1.4 −
𝑃𝑟

𝑃𝑐
)         

B) When considering the deformation effect of panel 

zone in the frame, the capacity of panel zone is as 

follows: 

In Equations (1) to (4), the first part deals with the 

yield point and the second part concerns the final 

capacity of panel zone. In the above equations, Fy is the 

yield stress of column cross-section, dc is column cross 

depth, tw is column web thickness, bcf is column flange 

width, tcf is column flange thickness, db is column depth, 

Pr is column design resistance and Pc is column axial 

yield resistance. 

It can be stated that the AISC uses five physical 

parameters of panel zone to calculate the shear capacity. 

These parameters are: 1) Depth of column, 2) Thickness 

of column, 3) Width of column, 4) Thickness of column, 

5) Depth of beam. 

Figure 1 shows the calculated values of Vpz, shear 

capacity based on the AISC relations for 510 specimens. 

Vpz is the shear capacity of panel zone named Rn in the 

AISC. 

 
Figure 1. Shear capacity based on the AISC relations for 510 

samples 
 

 

2. 2. Finite Elements Modeling 
2. 2. 1. Modeling Verification                In this part, in 

order to ensure the accuracy of the numerical results of 

the performed analysis, a steel beam to column 

connection performed by Stojadinović et al. [18] is 

modeled in ABAQUS. In the following, the mentioned 

model is analyzed and the results of this analysis are 

compared to laboratory results [18]. 

 
2. 2. 2. Geometrical Properties and Materials of 
the Laboratory Specimens            The laboratory 

specimen was built from a column with the W14 × 120 

section; and for the beam, a W24 × 68 section was used. 

The model geometry and loading details are shown in 

Figure 2. The used materials in this experiment are steel 

plates for the stiffeners, beams, and columns with the 

yield resistance of 358 MPa and ultimate tensile 

resistance of 475 MPa as shown in Table 1. 

𝑅𝑛 = 0.6 𝐹𝑦. 𝑑𝑐 . 𝑡𝑤(1 +
3𝑏𝑐𝑓.𝑡𝑐𝑓

2

𝑑𝑏.𝑑𝑐.𝑡𝑤
)  𝑃𝑟 ≤ 0.75𝑃𝑐 (3) 

𝑅𝑛 = 0.6𝐹𝑦 . 𝑑𝑐 . 𝑡𝑤(1 +
3𝑏𝑐𝑓.𝑡𝑐𝑓

𝑑𝑏.𝑑𝑐.𝑡𝑤
)(1.9 −

1.2𝑃𝑟

𝑃𝑐
)  

𝑃𝑟 > 0.75𝑃𝑐 (4) 

 

2. 2. 3. Meshing            In order to model the beam, 

column and the stiffener plates, the shell and solid 

elements were used. Also, the modeled geometry was 

partitioned for regular meshing with the partitioning 

command. 

 

2. 2. 4. Boundary Condition and Loading                  The 

boundary condition of the laboratory specimen requires 

that the displacement of all the nodes in the above and 

below the column were tightly restrained. Also, for the 

out-of-plane buckling, the beam was restrained. All the 

boundary and support conditions are applied in 

modeling. The loading was in the form of displacement 

application to the beam end with the amount of 195 mm. 
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Figure 2. Specimen geometry specifications 

 

 
TABLE 1. The specifications of the materials used in the 

experiment 

Young's 

modulus 

(GPa) 

Poisson's 

Ratio 

Ultimate Tensile 

Resistance 

(MPa) 

Yield 

Resistance 

(MPa) 

Material 

210 0.3 475 358 Steel 

 
 

2. 2. 5. The Results of the Load-Displacement 
Analysis                   The answers of load-final displacement 

resulted from the analysis results for the numerical 

sample with the answers of the load-displacement of the 

laboratory specimen are illustrated in Figure 3. As it can 

be observed in this figure, the load-displacement curves 

are almost coincident. In fact, from the beginning, the 

aim of the sample calibration was to accommodate the 

load-displacement curve of the numerical model with the 

laboratory sample. 

 

2. 2. 6. Parametric Studies with ABAQUS Software 
and Calculation of Shear Capacity of Panel Zones           
ABAQUS software version 2017 was used for parametric 

modeling and calculation of shear capacity of panel zone. 

In this part of the research, the details of modeling using 

finite element method are presented. In this section, the 

model made in the previous section is used for modeling, 

with the exception of the box-shaped column instead of 

the H-shaped column. In the models, it is assumed that 

the steel beam-column connections are rigid and welded. 

Variable parameters are used in modeling 510 models, 

namely change in beam flange thickness, beam web, 

continuity plate, column web thickness and column 

flange thickness. The boundary conditions are similar to 

the model boundary conditions made in the previous 

section. Four thicknesses of 8, 10, 15 and 20 mm were 

used for the beam flange, beam web and continuity plate 

thickness parameters. In addition, 6 thicknesses of 8, 10, 

15, 20, 30 and 40 mm were used for column web and 

column flange thickness (Table 2). 

The beam and column dimensions used in parametric 

studies are I500X250 and BOX400X400, respectively. 

For the used material in this study, the yield resistance of 

345 MPa and ultimate tensile resistance of 510 MPa are 

assumed. 

 

 

 

 
Figure 3. Comparison of load-displacement results for the 

numerical model and the experimental specimen 
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TABLE 2. Dimensions of parametric study models 

𝒕(𝒎𝒎)  Model 

8,10,15,20 

Beam flange 

Beam web 

Continuity Plate 

8,10,15,20,30,40 
Column flange 

Column web 

 

 

The boundary conditions of the parametric models 

were such that the displacement of all the nodes located 

at the top and bottom of the column which was 

constrained to be clamped. In addition, it was bound for 

the buckling off the beam plate. The loading was applied 

to the end of the beam by a displacement of 150 mm. The 

steel beam connections are rigid and welded. Therefore, 

the 9 cross-sectional geometrical parameters for 

calculating the shear capacity of panel zones are 

effective: 1) column length, 2) column width, 3) column 

flange thickness, 4) column web thickness, 5) beam 

flange width, 6) beam height (x to X beam flange), 7) 

beam flange thickness, 8) beam web thickness, and 9) 

thickness of panel zone stiffeners. To accelerate the 

modeling process, the S4R quadruple shell element was 

used to construct the cross-sections. To improve the 

accuracy, in the areas close to the connection and panel 

zones, a fine mesh was selected. In all cases, 3500 mm 

beam length and 3000 mm column length were 

considered. Figure 4 shows an overview of the model 

built into ABAQUS software. 

In the modeling performed, the proposed equations in 

literature [19] are used to calculate panel zone cut. In 

addition, the equations proposed in literature [20] are 

used to calculate the shear strain of panel zone. 

𝑉𝑝𝑧 =
𝑃𝐿

ℎ𝑡
(1 −

ℎ𝑡

𝐻
)  (5) 

𝛾 =
𝛥++𝛥−

2
(

√𝑑𝑝𝑧
2 +𝑏𝑝𝑧

2

𝑑𝑝𝑧𝑏𝑝𝑧
)  (6) 

 

 

 
Figure 4. An overview of the model built into ABAQUS 

software 

In Equations (5) and (6), p is the force applied to the end 

of the beam, L is the distance from the beam to the 

column, ht is the distance to the center of the beam flange, 

H is the height of the column, Δ is the diameter of panel 

zones, 𝑑𝑝𝑧 , 𝑏𝑝𝑧 are the vertical and horizontal spacing of 

panel zones, respectively. Figure 5 shows the parameters 

in the connection source. 

 Figure 6 shows the calculated values of shear capacity 

in ABAQUS software and Equations (5) and (6) for 510 

samples. 

 

 

4. NN DESIGN AND GA TO PREDICT SHEAR 
CAPACITY OF THE CONNECTION SOURCE 
 
4. 1. NN Design 
In general, there are several types of NNs. The study will 

use a "Feedforward NN" or "Perception NNs". This ANN 

relays data directly from front to back. Feedforward 

neuron training often requires back-propagation, which is 

a network of corresponding sets of inputs and outputs. 

When the input data is transferred to the neuron, it is 

processed and an output is generated. Basically, a NN is 

a combination of the following components: 

• An input layer that receives the data 

• Several hidden layers 

 

 

 
Figure 5. Details of the parameters in the connection source 

 

 

 
Figure 6. Shear capacity values in ABAQUS software for 510 

samples 
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• An output layer 

• Weights and bias between layers 

• A deliberate activation function for each hidden 

layer. In this paper, the function of "tangent sigmoid" 

(tansig) will be used. This function maps each value 

to a value from 0 to 1 and helps to normalize the sum 

of the input weights [21]. 

In this step, the NN is trained to make accurate 

predictions. Each input will have a weight (positive or 

negative). This implies that an input with a large number 

of positive weights or a large number of negative weights 

will further influence the output result. It should also be 

remembered that initializing the weights by assigning a 

random number to any weight will happen. At each step, 

9 geometric variables were assigned to 9 input layer 

neurons for training. Output data from ABAQUS 

software, we will have one number for every 9 inputs, 

introduced for training on NN. It should be noted that 510 

samples are available as databases in this section. In other 

words, we will have 510 data outputs from ABAQUS as 

target and 510 * 9 data as input. 70% of this data was 

used for training, 10% for validating or averaging, and 

20% for NN testing. For this problem, after trial and 

error, 6 hidden layers were considered. The next step was 

to determine the number of neurons in each layer. Each 

sample has 9 inputs and 1 output. As a result, we will 

have 9 neurons in the input layer and 1 neuron in the 

output layer. The number of neurons for secretory layers 

1-6 was considered equal to 20, 30, 45, 35, 25 and 10. 

After several trials and errors, these neurons were 

selected to specify the number of layers. In the next step, 

it was necessary to specify the activation functions of 

each layer. By selecting the appropriate activation 

function for a layer, this activation function applied to all 

neurons in the same layer. Table 3 shows the used 

functions. 

For the data of this paper, the tansig function 

(Sigmoid tangent) was used for individual layers and the 

purelin activation function (pair) for even layers, which 

showed relatively good convergence in outputs. Figure 7 

shows the NN training process for training, test and 

intermediate data. 

The four categories of data examined in this form are 

training data, test data, midterm data, and finally total 

data. Figure 8 shows the normal distribution of the error 

as a histogram during the training process. 

 

4. 2. GA Design and Optimization          As a 

computational  optimization  algorithm, by considering a  

 

 
TABLE 3. Activation functions for each NN layer 

No. 
First 

layer 
Second 

layer 
Third 

layer 
Fourth 

layer 
Fifth 

layer 
Sixth 

layer 

Activation 

function 
tansig purelin tansig purelin tansig purelin 

 

 
Figure 7. NN training diagram for training, test and 

intermediate data 

 
 

 
Figure 8. Histogram of error rate during training process  for 

NN in the first case 
 
 
set of answer space points in each computational 

iteration, the GA searches the different regions of the 

answer space efficiently. In the search mechanism, 

although the target function value of the whole answer 

space is not calculated, the calculated value of the target 

function for each point is involved in the statistical 

averaging of the objective function for each point, in the 

statistical averaging of the target function in all subfields 

to which the point depends Is. These subfields are 

statistically averaged in terms of the objective function. 

This process leads the space search to areas where the 

statistical mean of the objective function is high and the 

possibility of an absolute optimal point is greater. 

Because, unlike single-path methods, this method 

searches for an all-encompassing answer space, there is 

less chance of convergence to a local optimal point. This 

article uses the AISC Equation to derive shear capacity 

for system identification. In addition to the AISC 

equation, the combination of polynomial functions was 

also used to better identify different states. Equation (7) 

is the equation that the GA seeks to optimize by applying 

changes in the values of the 𝑎𝑖coefficients. In this 
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equation, the 𝑥𝑖represents the inputs. It should be noted 

that by deriving a common denominator of Equation (7) 

and simplification, we arrive at a linear equation. 

However, this practice is not defined for the GA. In other 

words, the response of the algorithm to the linear function 

obtained from the simplification of Equation (7) will be 

different from the answer to Equation (7) itself. Table 4 

shows coefficients 1-9 of the three optimized algorithms. 

In general, the outputs of the GA are expressed in three 

different states, namely the output of the project for one, 

two and three GAs that will work concurrently. 

𝑦 ≈ ∑ 𝛼𝑖(𝑥𝑖 +
𝑥𝑖

3

𝑥𝑖
2

9
𝑖=1 )  (7) 

 

 

5. VALIDATION AND COMPARISON OF RESULTS 
 

A series of graphs are plotted as colored contours, each 

of which determines the percentage error of the data part. 

In Figures 9-12, the percentage of NN output error and 

the GA are shown with the actual value. Taking a look at 

these color contours and the calculated error rate in each 

house from this checkerboard, we find that the GA 

worked well. Only one error point represents about 80% 

and most points below 10%. 

To evaluate the performance of the networks, the 

mean squared error (MSE) method with an ideal value of 

zero was used.  Mean Square Error  (MSE)  is one of the 

 

 

 
Figure.9. NN Output Error Percentage with Real Value 

(ABAQUS Software) 
 

 
Figure 10 . Comparison of the NN output with the actual 

output value of ABAQUS software as thermal graph 

 

 

 
Figure 11. Comparison of the output of the NN with the 

output value of the AISC as a thermal graph 
 

 

 
Figure 12 . GA Output Error Percentage with Real Value 

(ABAQUS Software) 

 

 

TABLE 4. Coefficients 1-9 of the three optimized algorithms 

 𝑎9 𝑎8 𝑎7 𝑎6 𝑎5 𝑎4 𝑎3 𝑎2 𝑎1 

Algorithm 1 49.21 49.22 49.08 2.52 × 10−5  0.0019 678.38 532.64 2.68 × 10−5 3.85 × 10−5 

Algorithm 2 90.35 90.71 88.26 0.0013 0.0012 42.61 238.70 0.0014 0.0005 

Algorithm 3 98.55 97.67 90.012 0.0042 0.0316 38.54 40.65 0.0074 0.0033 
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statistical tools for finding prediction accuracy in 

modeling [21]. 

𝑀𝑆𝐸 = ∑
(𝑜𝑏𝑠−𝑐𝑎𝑙𝑐)2

𝑁
𝑛
1   (8) 

N is Total number of training and test data pairs, obs is 

Training data, and Calc is Test data corresponding to 

training data . In this comparison, the data are divided into 

two categories. The first category relates to training data. 

This input data together with their response is provided 

to the smart method. Then, try to test the prediction 

performance using the second set of data, namely X data. 

Therefore, it is generally expected that the error of the 

training data is less than the test data. This is well seen in 

both Figures 13 and 14. In Figure 15, the error rate 

between the output of the NN and the output of the GA 

for ABAQUS data is calculated and shown. 

The first point to note is the low error of prediction of 

the results by the GA compared to the NN in all different 

modes. This suggests that the choice of GA would be 

more appropriate in this particular case. 

 

 

6. SENSITIVITY ANALYSIS 
 
For sensitivity analysis, all input data were normalized to 

the range of 0 to 1. These parameters include column 

flange thickness, column web thickness, beam flange 

thickness, column width, height of beam and thickness of 

 

 

 
Figure 13. Values of the MSE NN 

 

 

 
Figure 14. Values of the MSE GA 

 
Figure 15. The error rate between the output of the NN and 

the output of the GA 
 
 

continuity plates. The NN and GA are designed based on 

these parameters. If the output function is 𝑓 = 𝑅𝑛, for the 

variations in the variable input, the input xi is considered 

as follows: 

( ) ( )

2

n i i i i

i i

R f x x f x x

x x

 +  − −
=

 
 

(9) 

Considering ∆𝑥𝑖 = 0.05, 
∂𝑅𝑛

∂𝑥𝑖
  values were calculated as 

reported in Figure 16. 
 

 

 
Figure 16. Sensitivity analysis for 9 parameters influencing the 

shear capacity of panel zone 
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In this figure, the x-axis represents 510 data and the 

y-axis represents 
∂𝑅𝑛

∂𝑥𝑖
 . The number shown at the top of 

each figure represents the input variable input. According 

to Figure 16, compared to other parameters, the three 

counters, namely 1, 3 and 4, are more effective in 

calculating the shear capacity. These parameters are 

column width, column thickness, flange and column web, 

respectively. This proves that the AISC relations are not 

efficient for calculating the shear capacity of panel zones 

at high thicknesses. 

 
 
7. DISCUSSION AND CONCLUSION 
 
In this comparison, the data are divided into two 

categories. The first category relates to training data. This 

input data is provided along with their response to the 

smart method. Then, we try to test the prediction 

performance using the second set of data, the X data. 

When ABAQUS data is selected as training and test data, 

smart methods perform best. However, in another case, if 

the test data are selected from the AISC data, the error 

rate will increase sharply. The present study presents a 

model using multilayer perceptron ANN and regression 

analysis method. This model is capable of measuring the 

shear capacity of a steel-shaped box-shaped column 

panel zone using 9 effective parameters (i.e., column 

length, column width, column flange thickness, column 

web thickness, beam width, beam height (X to X beam 

flange), beam flange thickness, beam web thickness, 

stiffener thickness). The results of the designed NN and 

GA refer to the following. 

1) What is evident is the error of the AISC relations to 

determine the shear capacity of the box-shaped column 

panel zone. The AISC relations calculates shear capacity 

based on four parameters. However, the artificial 

intelligence networks in this study are trained on 9 

parameters and predict the shear capacity of the coupling 

source, which reduces the error rate. 

2) Sensitivity analysis based on a large parametric study 

of low to high thicknesses. In the AISC, the unstructured 

relations have shown that at high thicknesses, both the 

column thickness and the thickness of the bond plates 

affect the shear capacity. Therefore, by using the 

optimized equation of GA, a wide range of shear capacity 

of box-shaped columns with different column 

thicknesses can be obtained. 

3) Artificial Intelligence Networks This study is based on 

9 training parameters and predicts the shear capacity of 

the coupling source. Each of these AIs has errors with 

respect to ABAQUS output, which calculates the actual 

amount of shear capacity. Based on their performance 

evaluation, it can be concluded that the GA reduces the 

error to below 10% by using optimization. 
 

8. REFERENCES 
 

1.  Arabzadeh, A., and Hizaji, R. “A Simple Approach to Predict the 

Shear Capacity and Failure Mode of Fix-ended Reinforced 
Concrete Deep Beams based on Experimental Study.” 

International Journal of Engineering, Transactions A: Basics, 

Vol. 32, No. 4, (2019), 474–483. 

https://doi.org/10.5829/ije.2019.32.04a.03 

2.  AISC 360-05,Specification for structural steel buildings. 

Chicago(IL): American Institute of Steel Construction; (2010). 

3.  Mansouri, I., and Saffari, H. “A fast hybrid algorithm for 

nonlinear analysis of structures.” ASIAN Journal of Civil 

Engineering (BHRC), Vol. 15, No. 2, (2014), 213–229. 

https://www.sid.ir/en/journal/ViewPaper.aspx?ID=353421 

4.  Chithra, S., Kumar, S. R. R. S., Chinnaraju, K., and Alfin 

Ashmita, F. “A comparative study on the compressive strength 

prediction models for High Performance Concrete containing 

nano silica and copper slag using regression analysis and 
Artificial Neural Networks.” Construction and Building 

Materials, Vol. 114, (2016), 528–535. 

https://doi.org/10.1016/j.conbuildmat.2016.03.214 

5.  Hartmann, S. “Project Scheduling with Multiple Modes: A 

Genetic Algorithm.” Annals of Operations Research, Vol. 102, 

No. 1–4, (2001), 111–135. 

https://doi.org/10.1023/A:1010902015091 

6.  Elhewy, A. H., Mesbahi, E., and Pu, Y. “Reliability analysis of 

structures using neural network method.” Probabilistic 

Engineering Mechanics, Vol. 21, No. 1, (2006), 44–53. 

https://doi.org/10.1016/j.probengmech.2005.07.002 

7.  VANLUCHENE, R. D., and SUN, R. “Neural Networks in 
Structural Engineering.” Computer-Aided Civil and 

Infrastructure Engineering, Vol. 5, No. 3, (1990), 207–215. 

https://doi.org/10.1111/j.1467-8667.1990.tb00377.x 

8.  Jenkins, W. M. “Plane Frame Optimum Design Environment 

Based on Genetic Algorithm.” Journal of Structural 

Engineering, Vol. 118, No. 11, (1992), 3103–3112. 

https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3103) 

9.  Adeli, H. “Neural networks in civil engineering: 1989-2000.” 

Computer-Aided Civil and Infrastructure Engineering, Vol. 16, 
No. 2, (2001), 126–142. https://doi.org/10.1111/0885-

9507.00219 

10.  Sahoo, B., and Maity, D. “Damage assessment of structures using 
hybrid neuro-genetic algorithm.” Applied Soft Computing 

Journal, Vol. 7, No. 1, (2007), 89–104. 

https://doi.org/10.1016/j.asoc.2005.04.001 

11.  Khalkhali, A., Nariman-Zadeh, N., Khakshournia, S., and Amiri, 

S. “Optimal Design of Sandwich Panels using Multi-objective 

Genetic Algorithm and Finite Element Method.” International 

Journal of Engineering, Transactions C: Aspects, Vol. 27, No. 

3, (2014), 395–402. 

https://doi.org/10.5829/idosi.ije.2014.27.03c.06 

12.  Mallela, U. K., and Upadhyay, A. “Buckling load prediction of 

laminated  composite  stiffened  panels  subjected to in-plane 

shear using artificial neural networks.” Thin-Walled Structures, 
Vol. 102, (2016), 158–164. 

https://doi.org/10.1016/j.tws.2016.01.025 

13.  Abambres, M., and Lantsoght, E. O. L. “Neural network-based 
formula for shear capacity prediction of one-way slabs under 

concentrated loads.” Engineering Structures, Vol. 211, (2020), 

110501. https://doi.org/10.1016/j.engstruct.2020.110501 

14.  Hoang, N. D. “Estimating punching shear capacity of steel fibre 

reinforced concrete slabs using sequential piecewise multiple 

linear regression and artificial neural network.” Measurement: 

Journal of the International Measurement Confederation, Vol. 

 



M. Vajdian et al. / IJE TRANSACTIONS B: Applications  Vol. 33, No. 8, (August 2020)   1512-1521                                  1521 

 

137, (2019), 58–70. 

https://doi.org/10.1016/j.measurement.2019.01.035 

15.  Jang, B. W., and Kim, C. G. “Impact localization of composite 

stiffened panel with triangulation method using normalized 
magnitudes of fiber optic sensor signals.” Composite Structures, 

Vol. 211, (2019), 522–529. 

https://doi.org/10.1016/j.compstruct.2019.01.028 

16.  Hedayat, A. A., Ahmadi Afzadi, E., Kalantaripour, H., Morshedi, 

E., and Iranpour, A. “A new predictive model for the minimum 

strength requirement of steel moment frames using artificial 
neural network.” Soil Dynamics and Earthquake Engineering, 

Vol. 116, , (2019), 69–81. 

https://doi.org/10.1016/j.soildyn.2018.09.046 

17.  Krawinkler, H., Popov, E., and Bertero, V. “Shear behavior of 

steel frame joints.” Journal of the Structural Division, Vol. 101, 
No. 11, (1975), 2317–2336. Retrieved from 

https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0006323 

18.  Stojadinović, B., Goel, S. C., Lee, K. H., Margarian, A. G., and 

Choi, J. H. “Parametric tests on unreinforced steel moment 
connections.” Journal of Structural Engineering, Vol. 126, No. 

1, (2000), 40–49. https://doi.org/10.1061/(ASCE)0733-

9445(2000)126:1(40) 

19.  Mansouri, I., and Saffari, H. “A new steel panel zone model 

including axial force for thin to thick column flanges.” Steel and 

Composite Structures, Vol. 16, No. 4, (2014), 417–436. 

https://doi.org/10.12989/scs.2014.16.4.417 

20.  Bayo, E., Loureiro, A., and Lopez, M. “Shear behaviour of 

trapezoidal column panels. I: Experiments and finite element 
modelling.” Journal of Constructional Steel Research, Vol. 108, 

(2015), 60–69. https://doi.org/10.1016/j.jcsr.2014.10.026 

21.  Ho, S. L., Xie, M., and Goh, T. N. “A comparative study of neural 

network and Box-Jenkins ARIMA modeling in time series 

prediction.” Computers and Industrial Engineering, Vol. 42, 
No. 3-4, 371–375. https://doi.org/10.1016/S0360-

8352(02)00036-0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Persian Abstract 

 چکیده 

شکل با ضخامت    Iنامه فولاد آمريکا ظرفیت برشی مقاطع  هاي دانشمندان علم سازه بوده است. در آيینبررسی رفتار چشمه اتصال ستون باکسی شکل يکی از مهمترين دغدغه

هاي گردد و با خروجیتعیین می  و الگوريتم ژنتیک هاي فلزي با مقاطع باکسی شکل با شبکه عصبیستوندر اين مقاله ظرفیت برشی چشمه اتصال در    .شودکم ستون محاسبه می

افزار آباکوس، شبکه عصبی مدل اتصال در نرم  510بنابراين با اطلاعات پارامتريک بدست آمده از    نامه فولاد آمريکا مقايسه شده است.افزار اجزا محدود آباکوس و روابط آيیننرم

کند، طیف وسیعی از کلیه پارامترهاي تاثیرگذار در محاسبه میزان ظرفیت  بینی می دهد ظرفیت برشی که شبکه عصبی و الگوريتم ژنتیک پیششدند.نتايج نشان می  موزش دادهآ

تواند گزيته مناسبی باشد. در نهايت الگوريتم ژنتیک به همراه هاي مصتوعی به کار رفته می کند. بنابراين هوشمريکا استفاده می آنامه  برشی چشمه اتصال نسبت به روابط آيین 

 هاي بالاي ستون به حداقل برساند. هاي باکسی شکل فلزي حتی در ضخامتبهینه کردن يک رابطه رياضی توانسته است میزان خطا را در تعیین ظرفیت برشی چشمه اتصال ستون
 


