
IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020)   1852-1863 
 

  
Please cite this article as: A. Ranjbar, N. Barahmand, A. Ghanbari, Hybrid Artificial Intelligence Model Development for Roller-compacted 
Concrete Compressive Strength Estimation, International Journal of Engineering (IJE), IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 
2020)   1852-1863 

 
International Journal of Engineering 

 

J o u r n a l  H o m e p a g e :  w w w . i j e . i r  
 

 

Hybrid Artificial Intelligence Model Development for Roller-compacted Concrete 

Compressive Strength Estimation 
 

A. Ranjbar, N. Barahmand*, A. Ghanbari 
 
Department of Civil Engineering, Larestan Branch, Islamic Azad University, Larestan, Iran 

 
 

P A P E R  I N F O   

 
 

Paper history: 
Received 06 March 2020 
Received in revised form 20 April 2020 
Accepted 12 June 2020 

 
 

Keywords:  
Artificial Neural Network 
Artificial Bee Colony Algorithm 
Roller-compacted Concrete 
Compressive Strength 
 
 
 
 
 
 
 
 
 
 

A B S T R A C T  

 

This study implemented the artificial bee colony (ABC) metaheuristic algorithm to optimize the 

Artificial Neural Network (ANN) values for improving the accuracy of model and evaluate the developed 
model. Compressive strength of RCC was investigated using mix design materials in three forms, namely 

volumetric weight input (cement, water, coarse aggregate, fine aggregate, and binder), value ratio (water 

to cement ratio, water to binder ratio, and coarse aggregate to fine aggregate ratio), as well as the 
percentage of mix design values of different ages. A comprehensive, proper-range dataset containing 

333 mix designs was collected from various papers. The accuracy of the research models was 
investigated using error indices, namely correlation coefficient, root-mean-square-error (RMSE), mean 

absolute error (MAE), and developed hybrid models were compared. External validation and Monte 

Carlo simulation (MCS)-based uncertainty analysis was also used to validate the models and their results 
were reported. The experimental stage of the prediction of compressive strength values showed 

significant accuracy of the ANN-ABC model with (MAE=11.49, RMSE=0.920, RME=5.21) compared 

to other models in this study. Besides, the sensitivity analysis of predictor variables in this study revealed 
that the variables “specimen age,” “binder,” and “fine aggregate” were more effective and important in 

this research. Comparison of the results showed that the improved proposed model using the ABC 

algorithm was more capable and more accurate in reducing the error rate in providing computational 
relations compared to the default models examined in the prediction of the compressive strength of RCC 

and also tried in simplifying computational relations.  

doi: 10.5829/ije.2020.33.10a.04 
 

 
1. INTRODUCTION1 
 
Over the past few years, our country has been moving 

rapidly towards the construction of roads and streets 

using concrete to achieve economic growth benefits and 

consider environmental problems. Concrete road 

construction has become even more prominent, 

especially over the last decade, during which sustainable 

development and environmental problems have been 

much discussed. The cost of concrete pavement 

construction is lower than that of asphalt pavements and 

has a much longer shelf life. In addition, other advantages 

such as high compressive strength, desirable tensile and 

shear strength at low thickness, high corrosion and water 

penetration resistance, high abrasion resistance, and ease 
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of maintenance have made it possible to justify the use of 

relevant devices to implement it. However, the relatively 

short life span of this type of pavement and the complex 

design of this type of concrete necessitates the need for 

strong scientific support in the design and optimization 

of mix design. The problem of concrete mix design and 

achieving optimum strength to perform various 

engineering issues including dam construction, 

pavement, high-rise buildings, and large foundations 

(including hospitals, stadiums, etc.) has a long history. 

Nevertheless, this is achieved by spending a lot of money 

and time due to the specific complexities involved in 

selecting the type of constituents and their ratio to prepare 

the concrete with a certain strength. The importance and 

necessity of this issue become apparent when a 

 

 



A. Ranjbar et al. / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020)   1852-1863                                1853 
 

substantial amount of time and money is allocated to the 

concrete mix design in a project similar to RCC . 

Roller-compacted concrete (RCC) is a zero-slump 

concrete that becomes stiff due to roller vibration. Two 

types of RCC are used in construction work: low-cement 

mass RCC (mass RCC with low cement content) for the 

construction of dams and mass structures such as 

retaining walls, heavy foundations, and embankments 

where high strength is not required. For the relatively 

high-cement RCC (RCC with relatively high cement 

content) is used for rapid application of highway 

pavement layers and similar coatings; where high 

mechanical and wear strength is required. The main 

advantage of this type of concrete is its low cost [1]. 

Numerous methods have been proposed to determine 

the RCC mix ratios by concrete associations and 

committees, which are generally experimental, quasi-

experimental, and based on theoretical methods. 

Nonetheless, soil compaction and liquidity 

(performance) approaches are generally used in different 

mix ratio design methods. These two approaches are 

defined based on optimizing the dry density of the sample 

by optimum moisture content and mix design by absolute 

volume, respectively . 

Therefore, artificial intelligence methods are 

nowadays widely used to model and predict problems in 

civil engineering due to its significant benefits. On the 

other hand, among the things that have made it necessary 

to present a model for the RCC mix design are the range 

of materials used in this type of concrete, the complexity 

of the mix design, the effect of different parameters on 

the mix design, as well as finding the relationships 

between the various parameters of its mix design. 

Predicting and modeling the mix design or the resistance 

of these types of concrete is particularly complex in 

accordance with effective parameters similar to other 

types of concrete. On the other side, concrete mix design 

has become more complex as a result of the introduction 

of a variety of pozzolans, new materials added to the mix 

design of this type of concrete, as well as the impact of 

various concrete methods on this concrete, mix, and 

compaction. Moreover, the models that are trained can be 

used to predict the compressive strength of this type of 

concrete for engineering predictions and to obtain the 

most economical or optimal mix design using 

optimization techniques. 

Here, we refer to a number of studies that have been 

conducted on modeling the mechanical properties of 

RCC using artificial intelligence methods. In a study, Ni 

and Wang [1] showed that it is possible to predict 

resistance at different ages and RCC vibration time in a 

very short time with acceptable accuracy using neural 

networks obtained. In a study, Ashrafian et al. [2] 

demonstrated that the ANN model is more capable than 

the adaptive neural fuzzy inference system (ANFIS) 

models and SVM in predicting the compressive strength 

of RCC. Furthermore, the resistances estimated by ANN 

and the SVM have the highest and lowest compliance 

with the actual compressive strength, respectively. 

In their study, Amlashi et al. [3] observed that 

compressive strength will increase with an increase in the 

cement content as the rate of increase in strength 

decreases with an increase in the amount of fine RAP 

according to the results of the model sensitivity analysis. 

In addition, the compressive strength will increase with a 

decrease in the amount of fine RAP or an increase in 

curing time at a fixed amount of coarse aggregate. It was 

also observed that the effect of curing time on 

compressive strength decreases with an increase in the 

percentage of fine RAP. 

Ayaz et al. [4] studied the indices of compressive 

strength and ultrasonic pulse velocity (UPV) as a 

criterion to detect the quality of concrete containing 

natural additives using artificial intelligence methods. 

This study used tree modeling algorithms to predict these 

two components using 40 data collected from 10 mix 

designs. The results of the samples were examined at the 

ages of 3, 7, 28, and 120 days. 

Ashrafian et al. [5] used intelligent data-driven 

methods to estimate the compressive strength and UPV 

in nano-silica concrete. Five data-driven methods 

including linear regression, SVM, ANN, tree model, and 

multivariate adaptive regression splines (MARS) were 

investigated to provide computational relations of 

compressive strength and pulse velocity and prediction 

models were presented with high accuracy. Additionally, 

a number of computational relations have been 

introduced to estimate this type of concrete or nano 

property using the MARS method and the tree model. 

Al-Sudani et al. [6] investigated the prediction of 

water flow using the MARS method coupled with 

differential evolution (DE) algorithm (hybrid DE-

MARS). The results of this hybrid model were compared 

with those of classical data-driven modeling (DDM) 

models such as SVMs and simple MARS. The results 

presented in the form of error indices showed that the 

model quality was improved as a result of using a 

metaheuristic algorithm. 

Mansouri et al. [7] evaluated the behavior of Fiber 

Reinforced Polymer (FRP) (also called fiber-reinforced 

plastic) using a variety of artificial intelligence methods. 

3042 laboratory data from 253 different studies were 

selected to develop models, 60% of which were used for 

training, 20% for testing, and 20% for validating the 

presented models. The results of this study, presented in 

the form of RMSE statistics, showed that the tree model 

and MARS method performed better than the neural 

network and fuzzy neural network. 

Kaveh et al. [8] estimated the properties of self-

compacting concrete (SCC) containing fly ash (also 

known as pulverised fuel ash in the United Kingdom) 

using the MARS method and the tree model. This study 

presented 114 data collected from various literature 

review articles and computational relations to predict 
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SCC properties including compressive strength, tensile 

strength, flexural strength, and modulus of elasticity 

(MOE). The results indicate that artificial intelligence 

methods are considered reliable to predict the mechanical 

properties of this type of concrete. 

Asteris et al. [9] conducted a study to provide 

computational relations to predict the compressive 

strength of SCC containing metakaolin (MK). In this 

study, they considered and analyzed the size of the largest 

aggregate as an input for the first time. In this regard, they 

used the nonlinear and non-parametric MARS method as 

well as the M5p tree model to develop estimated 

relationships and presented the relationship-based 

models. 

In a study, Ashrafian et al. [10] investigated their 

newly developed model to estimate the compressive 

strength of lightweight concrete and compared its results 

with those of classical data-driven modeling techniques 

including ANN, SVMs, and MLR. In this study, the 

appropriate combination of inputs was used in the dataset 

using Mallow's Cp evaluation and a suitable structure 

was chosen for the inputs. The results of this study 

reported a more accurate and appropriate performance of 

the developed model compared to other methods.  

Regarding the background to the prediction and 

modeling of the compressive strength of RCC, it can be 

stated that only few studies have attempted to model the 

compressive strength of this type of concrete and find a 

solution to estimate this mechanical component. Thus, it 

is necessary to propose a modeling approach for 

predicting and modeling the compressive strength of 

RCC. Furthermore, previous studies have shown that 

using the neural network method alone yields poor 

performance (esp. determination of optimal model 

parameters). Hence, it is necessary to develop new 

models to solve the problem. In this regard, the central 

question (major problem) of the present study is whether 

the metaheuristic algorithms are considered as a suitable 

solution to increase the accuracy of artificial intelligent 

models for estimating the compressive strength of RCC. 

Research sub-questions include: 

How much increase in accuracy and decrease in error 

is observed in the proposed ANN-ABC method 

compared to the ANN method and other regression 

methods? Which component in the RCC mix design has 

the largest impact on compressive strength? 

In addition, the assumptions of the present study for 

modeling a 28-day RCC resistance are as follows: 

• For modeling, the laboratory moisture and 

temperature of the concrete samples are not found in the 

model. 

• Influential factors such as concrete construction, 

curing, transfer, and placing are not found in the model. 

• The grading of each fine and coarse aggregate 

constituting RCC is assumed to be uniform. 

 

2. MATERIALS AND METHODS 
 

This study evaluates the ANN and ANN-ABC models in 

terms of performance accuracy, and compares and 

contrasts the model with the best results as the preferred 

model for each method to determine the best method for 

predicting the compressive strength of pavement RCC. It 

should be noted that modeling aims to evaluate the 

capability of these methods in predicting the compressive 

strength of pavement RCC. The results were then 

compared with those of the MLR model. 

 

2. 1. Development of Hybrid ANN-ABC Model          
The ABC algorithm is used in a wide variety of fields, 

including in the training of feedforward ANNs, which is 

considered one of the most interesting applications. 

Applying the ABC algorithm to train ANNs is a simple 

and convenient method. The multidimensional search 

space employed by the ABC algorithm is the space 

associated with the weights of network connections and 

neurons. Food resource competency is measured by the 

standard measure of network output performance, 

including SSE of the “network training set” data. The 

most important advantage of this algorithm is the 

simultaneous search of the entire solution space. 

The present study has used the ABC algorithm as a 

method for learning ANN to overcome the disadvantages 

created by the recursive extension algorithm in ANN 

training. The ABC algorithm is selected as an 

optimization tool because it can find optimal solutions 

along with relatively moderate computations. In addition, 

the ABC algorithm is used in the process of training 

ANNs to achieve the desired parameters such as network 

weight and bias to minimize the error function. These 

parameters are updated gradually to achieve the desired 

convergence criterion. Figure 1 shows the process of 

optimizing the values of ANN parameters by the ABC 

algorithm. 

 

 

 
Figure 1. Artificial Bee Colony Algorithm Used in ANN 

Training  

 



A. Ranjbar et al. / IJE TRANSACTIONS A: Basics Vol. 33, No. 10, (October 2020)   1852-1863                                1855 
 

It seems that using swarm intelligence (SI)-based 

algorithms such as ABC algorithm is an appropriate 

solution to optimize the performance of ANNs, given the 

limitations of the backpropagation training algorithm. 

 

2. 2. The Dataset Used in the Present Study               A 

comprehensive laboratory database is needed to estimate 

the compressive strength of pavement RCC using the 

above models. Thus, 333 laboratory datasets were 

collected from published and validated laboratory studies 

for modeling the compressive strength of the pavement 

RCC [11–21]. Of the total data, 75% (i.e., 250 data) were 

considered to perform the training phases and 25% (i.e., 

83 data) to perform the test phases, respectively. Figure 

2 shows the flowchart of the implementation steps of this 

research during the modeling, analysis, and validation 

processes. 

 
 

3. RESULTS AND DISCUSSION 
 
3. 1. Selection of Input Parameters to Develop the 
Proposed Models               According to Table 1, three 

scenarios with different input combination arrangements 

under different conditions are considered to select the 

optimal input state to develop the proposed model. In this 

evaluation, three different input types of values were 

evaluated as volumetric weight (dimensional), the ratio 

of values to each other (dimensionless), and percentage 

of values. 

According to Table 2, Scenario 1 presented the most 

optimal results based on statistical analysis with respect 

to the results of statistical indices. In this analysis, the 

Mallows index is a function of the predictor variables in 

Scenario 1 considering the compressive strength (CS) in 

this study, as shown in Equation (1). Accordingly, 

according to Equation (1), predictor inputs for model 

development are compressive strength (CS) of pavement 

RCC including cement (C), coarse aggregate (CA), fine 

aggregate (FA), water (W), binder (cement + pozzolan) 

(B), and specimen age (AS). In this selected combination, 

the specimen age unit is presented on a daily basis and 

the rest of the input variables are in kg/m3. 

CS = 𝑓 (𝐶𝐴, 𝐹𝐴, 𝐶, 𝑊, 𝐵, 𝐴𝑆)  (1) 

 
3. 2. Statistical Analysis of Input and Output 
Parameters in the Present Study            A large 

standard deviation (SD) indicates a significant data 

sparsity (dispersion). According to Table 3, the data 

collected in this study have a significant sparsity over the 

study area and have facilitated the modeling process. 

 
3. 3. Development of Multivariate Linear 
Regression Model           In this section, the modeling 

process is performed using the MLR method to compare 

the values with the results of other developed methods. 

Hence, the configuration structure derived from the six 

predictor inputs is used. The MLR method structure used 

the "minimum mean square error (MMSE)" algorithm to 

optimize the weights and parameters of the model values 

to establish a linear relationship between the input 

variables and the output variables. Model learning 

process performed in  MATLAB  using training data and 

 

 

 
Figure 2. Flowchart of the implementation steps of the modeling process in this study 
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TABLE 1. Predicted scenarios for selecting the best input state 

for model development 

Scenario 
Input 

Values 
Description 

1 6 𝐶𝑆 = 𝑓 (𝐶𝐴, 𝐹𝐴, 𝐶, 𝑊, 𝐵, 𝐴𝑆)  

2 4 𝐶𝑆 = (
𝑊

𝐵
,

𝑊

𝐶
,

𝐶𝐴

𝐹𝐴
, 𝐴𝑆 )  

3 6 𝐶𝑆 = (%𝐶𝐴, %𝐹𝐴, %𝐶, %𝑊, %𝐵, 𝐴𝑆 )  

 
 
TABLE 2. Results of investigation of scenarios to select the 

best input state in Minitab 

3 2 1 Scenario 

9.11 9 7.86 Cp 

67.60 69.55 76.18 R2 

 
 

TABLE 3. Statistical analysis of predictor variables 

Variables Mode SD Mean 
Min 

Value 

Max 

Value 

Coarse 

Aggregate 
1095 178.09 1058.01 585 1316 

Fine 

Aggregate 
807 197.67 801.56 272.50 1263 

Binder 295 67.98 310.71 200 672.50 

Water 114 41.22 128.77 78 336.25 

Cement 400 91.02 211.12 49 400 

Specimen 

Age 
28 44.58 47.549 7 180 

Compressive 

Strength 
24 15.23 37.78 6.80 75.50 

 
 

a developed linear relationship has been reported below 

as Equation (2) to predict compressive strength with a 

correlation coefficient of 0.59: 

𝐶𝑆 = 0.14 𝐴𝑆 + 0.0002𝐹𝐴 + 0.0644𝐶 −
0.1531𝑊 + 0.0555𝐵 + 19.894 + 0.0001𝐶𝐴  

(2) 

 
3. 4. Development of the Artificial Neural Network 
Model                This study used a multilayer perceptron 

(MLP) neural network, which has a hidden layer. Fifty 

neural network models were constructed and evaluated to 

determine the optimal number of nerves in hidden layers. 

To do this, the number of nerves is added up one by one 

in the first hidden layer (n = 1-50) and the performance 

of each model was examined. The Levenberg-Marquardt 

(LM) algorithm was used to train the neural network. 

This algorithm is often considered as the fastest 

backpropagation algorithm and is strongly recommended 

as the first choice in supervised learning algorithms. 

Tangent sigmoid, logarithmic sigmoid, and logarithmic 

linear functions were used to determine the appropriate 

excitation function in the hidden and output layers. The 

best result was related to the tangent sigmoid function in 

the hidden layer and the linear function in the output 

layer. 

75% (n = 250) and 25% (n = 83) of the information 

were used to train and test networks, respectively. Table 

4 presents the results of the performance evaluation of 

each step. The final model is determined based on its 

performance in the test phase. It should be noted that 

different weights are assigned to the network with each 

analysis of the ANN model in MATLAB; thus, a 

different solution is obtained with each analysis. To 

overcome this problem, neuron analysis was performed 

in hidden layers for 50 times for each ANN model. Table 

4 reports fifteen appropriate performance results. The 

Neural Network 6 (with  six neurons in the hidden layer) 

is the best developed model selected as the final model. 

In this study, the optimal model has a training rate of 

0.25, a momentum index of 0.3, and 2000 repeats. As can 

be deduced from (Table 4), the six nerves in the hidden 

layer (i.e., the architecture of the network 1-6-6) yielded 

the best results and the Neural Network 6 Model is the 

best ANN model. 

Figure 3 shows the evaluation criteria in each ANN 

model in the form of a graph. High values of parameter 

R and low values of RMSE indicate the high performance 

of the model. 

Moreover, Figure 4 shows the architectural structure 

of the developed neural network model. The 

computational time of the ANN model in the  

 

 
TABLE 4. Neural network performance evaluation criteria in 

the training phase 

Test Stage Training Stage 
Model 

RMSE R RMSE R 

71.452 0.829 85.900 0.808 NN1 

62.480 0.844 83.122 0.811 NN2 

63.623 0.840 83.117 0.812 NN3 

63.442 0.848 83.122 0.811 NN4 

66.263 0.854 90.618 0.801 NN5 

65.41 0.857 76.68 0.861 NN6 

78.946 0.805 95.329 0.770 NN7 

80.976 0.800 95.800 0.766 NN8 

88.845 0.745 95.612 0.741 NN9 

91.013 0.722 98.845 0.722 NN10 

96.852 0.711 98.010 0.720 NN11 

89.999 0.739 93.621 0.733 NN12 

93.569 0.718 900.60 0.800 NN13 

73.699 0.822 84.329 0.819 NN14 

64.020 0.839 900.060 0.800 NN15 
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Figure 3. Evaluation criteria for ANN models 

 

 

 
Figure 4. Architecture structure of the developed neural 

network model 

 

 

computational analysis of this study is 9.12 seconds and 

the time spent for model structure formation is 0.62 

seconds. 

 

3. 5. Development of an Improved ANN Model 
Using ABC Algorithm             Evaluations showed that 

the optimal network has a 6-8-6 architecture with eight 

neurons in the hidden layer, six neurons in the input layer, 

and one neuron in the output layer. Table 5 shows the 

parameters for the ABC algorithm to optimize the 

network weights and biases. The number of iterations 

was assumed 1000 at each time and the initial population 

to be 50. 

 
 
TABLE 5. ABC algorithm parameters to optimize network 

values 

Parameter Value 

Initial population size 10-100 

No. of repetitions 10-1000 

Maximum number of cycles 100 

Local search 15 

Furthermore, Figure 5 evaluates the convergence of the 

ABC algorithm in combination with the neural network 

model to achieve optimal values. Due to the convergence 

process, the algorithm takes a constant trend at the 140th 

iteration that turns into a linear process from the 480th 

iteration and optimal values are found from the solutions. 

 

3. 6. Comparison of Models Developed to Predict 
the Compressive Strength of RCC             According 

to Table 6, the correlation coefficients at the training 

phase are 0.603, 0.821, and 0.938 for the LRM, ANN, 

and neural network improved with the ABC algorithm, 

respectively. In addition, the RMSE values at this stage 

are 145.47, 76.68, and 39.97 MPa for the proposed MLR, 

ANN, and ANN-ABC models, respectively. 

Furthermore, the MAE for the ANN-ABC (4.71) model 

was better than the other three models. Thus, the 

statistical indices show that the proposed ANN-ABC 

model has a better performance and higher accuracy at 

the training stage than the other models. Applying a 

metaheuristic algorithm approach to model learning has 

played a fundamental role in better estimating the 

intelligent model. At the test stage, the newly developed 

ANN-ABC model with a correlation coefficient of 0.920 

and RMSE and MAE values of 49.11 and 5.21 MPa, 

respectively, had more significant accuracy compared to 

the other two models. Additionally, the ANN-ABC 

model reduced the error generation process by 105.52 

and 16.3 to reduce the error rate of the models presented 

in this study. 

As shown in Figure 6, the neural network model, in 

combination with the ABC algorithm, involves less error 

in training compared to multiple regression and ANN in 

predicting the compressive strength values of pavement 

RCC. In a qualitative comparison, most compressive 

strength values are concentrated on the bisector (i.e., 

ideal line) and only a few of these points are outside the 

focus area (outliers). As shown in Figure 6c, in the model 

evaluation, a deviation of more than 20% was observed 

in the  prediction of the  estimated points in  the range of 

 
 

 
Figure 5. Evaluation of convergence in the iteration of the 

ABC algorithm  
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TABLE 6. Performance evaluation of the proposed models 

Stages Models R RMSE MAE 

Training 

MLR 0.603 145.47 9.86 

ANN 0.821 76.68 6.47 

ANN-ABC 0.938 39.97 4.71 

Test 

MLR 0.590 154.63 10.32 

ANN 0.857 65.41 5.90 

ANN-ABC 0.920 49.11 5.21 

 

 
20-40 MPa which was reduced severely using the ABC 

metaheuristic algorithm. The predicted values in this 

range were mostly higher than the actual values; 

however, the estimates were largely lower than the 

laboratory values with an increase of more than 50 MPa 

in values. Overall, the methods used in this study were 

well-trained for evaluation. 

 

 

 
Figure 6. Scatter plot of the compressive strength values in 

the training phase for the proposed models 

According to Figure 7, the compressive strength 

values of the models are predicted with good accuracy in 

the test phase. In predicting these values, the 

computational error was mainly less than 20% and the 

correlation between actual and predicted laboratory 

values was more than 85%. Furthermore, due to the 

percentage of the absolute error in the test phase, the 

combination of a metaheuristic algorithm with the ANN 

model reduced the error by 11.69%. 

As shown by red dashed lines in Figure 8, the weak-

prediction data (i.e., less fitness) are mainly over-

estimated or under-estimated in the calculation of the 

reference values. This error rate has been reduced by 

applying refinement methods to the model, such as 

hybrid algorithms (i.e., hybrid models) and a more 

efficient and accurate model. 

Based on the time series plot, the local minima and 

maxima predictions are better evaluated in the training 

and testing stages shown in Figure 9. The MLR and ANN  

 

 

 
Figure 7. Scatter plot of the compressive strength values in 

the test phase for the proposed models 
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Figure 8. Compressive strength values of RCC in the test 

phase for all the proposed models  

 

 

methods had relatively poor performance compared to 

the developed ANN-ABC model in this study. The 

hybrid ANN-ABC algorithm has been more successful in 

estimating local maxima and minima in the test phase. 

Moreover, the analysis of the presented models shows 

that local maxima are predicted with a greater error with 

an increase in the compressive strength values. This 

weakness is largely remedied by improving the neural 

network model by combining it with the ABC 

metaheuristic algorithm. 

Figure 10 shows the error distribution values of the 

three methods used. The error distribution was mainly in 

the range of -20 to -30. Besides, the error range in the 

ANN-ABC model was between -10 and 10. 

 

3. 7. Sensitivity Analysis               This study has selected 

the ANN-ABC model  (i.e.,  the best model in this study) 

 

 

 
Figure 9. Time series plot of the proposed models; A: MLR, 

B: ANN, C: ANN-ABC 
 

 
Figure 10. Error distribution values for the three methods 

used 

 

 

to perform a sensitivity analysis to determine the effect 

of each input parameter on the compressive strength of 

pavement RCC. According to Table 7, the results of the 

sensitivity analysis show that the omission of the 

predictor variable "specimen age" with the correlation 

coefficient of R = 0.601 and MAE = 9.383 had the largest 

effect on the proposed ANN-ABC model in estimating 

the compressive strength of pavement RCC. 

Furthermore, among the mix design variables, the 

variables “binder” and “fine aggregate” had the greatest 

impact on the compressive strength, with a 22.1% and 

17.7% decrease, respectively, in the result of the 

correlation coefficient at the experimental stage. 

 

3. 8. External Validation of the Proposed Models           
A new external validation criterion is presented to 

evaluate the proposed models based on their performance 

with the test dataset. Accordingly, at least one slope of 

the regression line from the origin for the predicted 

values to the observed values (K) or vice versa (K′) 

should be close to 1 as stated in Equations (3) and (4) 

[22]. 

𝐾 = ∑ (𝑂𝑖 × 𝑃𝑖)/𝑃𝑖
2    𝑛

𝑖=1       (3) 

𝐾′ = ∑ (𝑂𝑖 × 𝑃𝑖
𝑛
𝑖=1 ) / 𝑂𝑖

2  (4) 

In addition, using the coefficient of determination (R2) 

resulted from Equations (5) and (6), the regression line 

from origin should be less than 0.1. 

 

 
TABLE 7. Sensitivity analysis of predictor parameters in 

compressive strength 

Input Parameters R MAE 

The omission of “Binder” variable 0.699 7.031 

The omission of “Water” variable 0.823 5.796 

The omission of “Cement” variable 0.780 6.873 

The omission of “Fine aggregate” 

variable 
0.743 7.893 

The omission of “Coarse aggregate” 

variable 
0.745 7.234 

The omission of “Specimen age” 

variable 
0.601 9.383 
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𝑚 = (𝑅2 − 𝑅0
2) / 𝑅2  (5) 

𝑛 = (𝑅2 − 𝑅0
′2) / 𝑅2  (6) 

 where 𝑅0
2 is the square of the correlation coefficient from 

origin between the predicted and observed values, and 

𝑅0
′2 is the square of the correlation coefficient between 

the observed and predicted values calculated via 

Equations (7) to (9) as follows [23]: 

𝑅𝑚 = 𝑅2 × (1 − √|𝑅2 − 𝑅0
2|)  >  0.5  (7) 

𝑅0
2 = 1 − ∑ 𝑃𝑖

2(1 − 𝐾)2/ ∑ (𝑃𝑖 − 𝑃 ̅)2𝑛
𝑖=1

𝑛
𝑖=1       (8) 

𝑅0
′2 = 1 − ∑ 𝑂𝑖

2(1 − 𝐾′)2/ ∑ (𝑂𝑖 − 𝑂 ̅)2𝑛
𝑖=1

𝑛
𝑖=1   (9) 

As can be seen in Table 8, the ANN-ABC model 

performed well within the scope of this validation based 

on validation criteria. Therefore, this method has high 

prediction accuracy and the amount of correlation 

between predicted and observed values in this method 

has not been estimated randomly. 

Proposed models can be used to predict natural events 

if some or all of the validation conditions are valid for 

them. Accordingly, the Rm parameter for each of the 

improved  models  is  greater  than  0.5.  The  coefficients 

of  determination  of  n  and  m  are  also  less  than  0.1  

for  all  models.  As  can  be  seen  from  Table  8,  the 

methods  used  can  be  introduced  as  predictor  models  

by  satisfying  the  relevant  validation  criteria.  In 

addition, this correlation between the predicted and 

observed values of compressive strength cannot be 

random [24]. 

 
3. 9. Uncertainty Analysis            Simply put, 

uncertainty refers to what happens outside human 

control. In this section, a quantitative evaluation is 

presented of uncertainties based on the Monte-Carlo 

simulation (MCS) approach using intelligent models to 

estimate the compressive strength of pavement RCC. The 

uncertainty analysis is implemented for 333 laboratory 

data used in this dissertation (thesis for MSc) with 

250,000 iterations. Besides, this analysis can add to the 

advantages of the proposed intelligent methods over 

empirical relationships. The relevant analysis is 

performed using the following equations that consider 

uncertainty in the range of less than 35% as acceptable 

[25], as shown in Table 9. Mean absolute deviation and 

uncertainty can be derived using Equations (10) and (11) 

as follow: 

• Mean Absolute Deviation (MAD): 

𝑀𝐴𝐷 =  
1

𝑀
∑ |𝑃𝑖 − 𝑀𝑒𝑑𝑖𝑎𝑛(𝑃)|𝑀

𝑖=1   (10) 

• Uncertainty%: 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦% =  
100× 𝑀𝐴𝐷

𝑀𝑒𝑑𝑖𝑎𝑛(𝑃)
  (11) 

TABLE 8. External validation criterion for predicting 

compressive strength 

Model K K' m n Rm 

MLR 1.04 0.914 -0.446 -0.400 0.444 

ANN 1.02 0.936 -0.364 -0.334 0.533 

ANN-ABC 0.973 0.999 -0.244 -0.252 0.565 

Conditions (85/0< K, K' <1.15) (m, n <0.1) (Rm > 0.5) 

 
 
3. 10. Validation of the Proposed Models Using 
Real Data              This study used eight unused pavement 

RCC data at 7, 28, 90, and 180 days of age that were not 

used in model development to validate models and to 

control their reliability conditions, whose values are 

described in Table 10. Input data for this evaluation are 

collected from Ref. [26–28]. 

The results of this evaluation, presented in Table 11, 

clearly show that the real and computational values are 

consistent for each of the six samples and the accuracy of 

the predictions is accompanied by an acceptable error. 

The MARS-ABC model with RMSE and MAE of 21.85 

and 4.79, respectively, and a correlation coefficient 

above 0.8, which is an acceptable correlation condition 

(0.94), is validated at this stage. Based on the results, the 

proposed models, the accuracy of the predicted values of 

the developed models, and the accuracy of their 

estimation have been validated. [29, 30]. 

 
 

TABLE 9. Monte Carlo uncertainty analysis for the proposed 

models 

Models Median MAD Uncertainty % 

MLR 33.62 14.23 58.47 

ANN 38.90 10.26 33.40 

ANN-ABC 40.96 9.11 26.63 

 

 
TABLE 10. Input data for validation of the model prediction 

 AS CA FA C W B 

A 7 841 1235 150 105 250 

B 7 1209 801 295 114 295 

C 90 1209 801 175 130 295 

D 90 772 1158 330 105.6 330 

E 90 1095 807 125 94 313 

F 180 1209 801 295 114 295 

G 28 1095 807 193 103 322 

H 90 633.75 427.78 210 165 300 
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TABLE 11. Evaluation of the models at the validation stage 

MAE RMSE R Error Rate Calculated Compressive Strength Actual Compressive Strength Sample (Specimen) 

4.79 21.85 0.94 

-1.857 23.65 21.8 A 

-4.798 31.29 26.5 B 

13.917 56.33 70.25 C 

-1.847 46.84 45 D 

-3.788 58.08 54.3 E 

-0.811 54.21 53.4 F 

1.2626 47.53 48.8 G 

-1.649 41.99 40.35 H 

 
 
4. CONCLUSIONS 
 
This study utilized novel data-driven modeling 

techniques, namely Multiple Linear Regression (MLR) 

and Artificial Neural Network (ANN), as well as a newly 

developed ANN-ABC approach to predict the 

comprehensive strength of pavement RCC. Initially, 

three different scenarios were defined to extract the 

parameters affecting the compressive strength of this 

type of concrete. The best combination of input variables, 

including six input parameters, namely coarse aggregate, 

fine aggregate, cement, water, binder, and specimen age, 

were used to develop the proposed models based on Cp 

mallow and R2 indices in Minitab. According to the error 

statistical indices in the training phase, the ANN-ABC 

model (RMSE = 39.97, R = 0.938) performed better in 

estimating the compressive strength of the pavement 

RCC than ANN (RMSE = 76.68, RR = 0.821) and MLR 

(RMSE = 145.47, R = 0.603). Furthermore, the MAE 

statistical index for the improved ANN (4.71 MPa) 

reported a lower mean error. As a result, the statistical 

indices show that the proposed ANN-ABC model has a 

better performance and higher accuracy in the training 

phase than the other models. In other words, the 

application of metaheuristic algorithms to the model 

learning process improves the accuracy of the developed 

model. At the experimental stage, the compressive 

strength values of the models are predicted with good 

accuracy. The ANN-ABC model (MAE = 5.21, RMSE = 

49.11, R = 0.920) reported significant accuracy compared 

to the other models used in this study. Sensitivity analysis 

results show that the omission of the predictor variable 

"specimen age" with the highest correlation coefficient of 

R = 0.601 and MAE = 9.383 had the highest effect on the 

proposed ANN-ABC model (i.e., the best model in this 

study) in estimating the compressive strength of 

pavement RCC. Furthermore, the mix design variables, 

namely the variables “binder” and “fine aggregate,” had 

the greatest impact on compressive strength, with a 

22.1% and 17.7% decrease, respectively, in the result of 

the correlation coefficient at the test stage. The validity 

of the developed compressive strength models was 

evaluated using external validation, Monte Carlo 

uncertainty analysis, and validation of real laboratory 

values. The results suggested that the models presented 

are within the acceptable range of the indicators of this 

evaluation and are valid. 
 
 
5. SUGGESTIONS FOR FUTURE RESEARCH 
 
In recent years, great attention has been devoted to 

laboratory analyses and resulting modeling given the 

importance of RCC in industries and the attainment of 

appropriate resistance. This section offers a number of 

suggestions for future research and continuing the path of 

data-driven research: 

Emerging concrete such as geopolymer concrete, 

heavy concrete, and SCC containing nanomaterials can 

be considered in the data-driven modeling process due to 

the multiplicity of influential materials. 

Considering the structure of the MSE method in 

artificial neural models, it is suggested to use other 

metaheuristic algorithms such as ant colony optimization 

(ACO), particle swarm optimization (PSO) and genetic 

algorithm (GA) to improve performance and evaluate 

accuracy and speed. 

Other data-driven models such as Model Tree (MT), 

Support Vector Machine (SVM), and Evolutionary 

Polynomial Regression (EPR) can be used to estimate the 

compressive strength of pavement RCC. 

Consideration of other experiments on the properties 

of pavement RCC may also be of interest to continue this 

study. 
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Persian Abstract 

 چکیده 
  مصنوعی   عصبی   یشبکه  روش  مقادیر  کردن  بهینه  برای(  ABC)  مصنوعی   عسل  زنبور  کلونی  فراابتکاری   الگوریتم   شده،  ارائه  مدل  دقت  بخشیدن  بهبود  به منظور  پژوهش،  این   در

(ANN  ) درشت  سیمان،آب،)  حجمی  وزنی   ورودی  فرم  سه   در  اختلاط   طرح  مصالح  از  استفاده  با   غلتکی  بتن   فشاری  مقاومت .  شد  ارزیابی  شدهدادهتوسعه  مدل  و  شده  سازیپیاده 

  مختلف   سنین  در  اختلاط  طرح  مقادیر  درصد  همچنین  و(  ریزدانه  به  دانهدرشت   نسبت  چسباننده،  به  آب   نسبت  سیمان،  به  آب   نسبت)  مقادیر  نسبت  ،(چسباننده  و  ریزدانه  دانه،

  از   استفاده  با  پژوهش  این  هایمدل  دقت.  شد  آوریجمع   مختلف  مقالات   از  اختلاط  طرح  333  شامل  هاداده  مناسب  یمحدوده  دارای  و  جامع  یمجموعه.  گردید  بررسی

  اعتبار   برای  همچنین،.  گردید  مقایسه  شده،  داده  توسعه  ترکیبی  هایمدل  و  بررسی   مطلق  خطای  میانگین  خطا،  مربعات   میانگین   یریشه  همبستگی،  ضریب  خطا شامل  هایشاخص

  مدل   معلوم شد که  فشاری،  مقاومت  مقادیر  بینیپیش  آزمایش  یمرحله   در.  گردید  گزارش  نتیجه  و  انجام  کارلو  مونت  قطعیت  عدم  تحلیل   و  خارجی  اعتبارسنجی  ها،مدل  سنجی

 مطالعه   این  هایمدل  دیگر   با  مقایسه  در(  =MAE=49/11, RMSE=920 /0R ,21/5)  با(  ANN-ABC) عسل  زنبور   کلونی  الگوریتم  با  بهبودیافته  مصنوعیِ  عصبی  یشبکه

  اهمیت   و  اثرگذاری  با  متغیرهایی  ریزدانه  و  چسباننده  نمونه،  که سن  کرد  مشخص  مطالعه  این  در  بینپیش   متغیرهای  حساسیت  تحلیل  همچنین،.  است  داشته  توجهی  قابل  دقت

  توانایی   محاسباتی  روابط  یارائه   در  مصنوعی  عسل  زنبور  کلونی  الگوریتم  با  پیشنهادی  ییافتهبهبود  مدل  که  است  این   گرنشان  نتایج  یمقایسه.  است  بوده  تحقیق  این  در  بیشتر

  روابط   سازی  ساده  در  سعی   همچنین  و  داده  نشان  غلتکی  بتن   فشاری   مقاومت  بینیپیش  در  شده  بررسی  فرضپیش   هایمدل  به  نسبت  بالاتری  دقت  و   خطا  کاهش  در   بیشتری

 است.  داشته محاسباتی

 
 


