A Statistical Method for Sequential Images–based Process Monitoring

Document Type : Original Article


Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran


Today, with the growth of technology, monitoring processes by the use of video and satellite sensors have been more expanded, due to their rich and valuable information. Recently, some researchers have used sequential images for defect detection because a single image is not sufficient for process monitoring. In this paper, by adding the time dimension to the image-based process monitoring problem, we detect process changes (such as the changes in the size, location, speed, color, etc.). The temporal correlation between the images and the high dimensionality of the data make this a complex problem. To address this, using the sequential images, a statistical approach with RIDGE regression and a Q control chart is proposed to monitor the process. This method can be applied to color and gray images. To validate the proposed method, it was applied to a real case study and was compared to the best methods in literature. The obtained results showed that it was more effective in finding the changes.


1. Woodall, W. H. Woodall, W.H., and Spitzner, D.J., Montgomery, D.C. and Gupta, S., “Using Control Charts to Monitor Process and Product Quality Profiles”, Journal of Quality Technology, Vol. 36, No. 3, (2004), 309-320. doi: 10.1080/00224065.2004.11980276 2. Bui, A.T., and Apley, D.W., “A monitoring and diagnostic approach for stochastic textured surfaces”, Technometrics, Vol. 60, No. 1, (2018), 1-13. doi: 10.1080/00401706.2017.1302362 3. Yan, H., Paynabar, K., and Shi, J., “Image-based process monitoring using low-rank tensor decomposition”, IEEE Transactions on Automation Science and Engineering, Vol, 12, No. 1, (2015), 216-227. doi: 10.1109/TASE.2014.2327029
4. Prats-Montalbán, J.M. and Ferrer, A., “Statistical process control based on Multivariate Image Analysis: A new proposal for monitoring and defect detection”, Computers & Chemical Engineering, Vol. 71, (2014), 501-511. doi: 10.1016/j.compchemeng.2014.09.014 5. Yu, H., MacGregor, J.F., Haarsma, G. and Bourg, W., “Digital imaging for online monitoring and control of industrial snack food processes”, Industrial & Engineering Chemistry Research, Vol.42, No. 13, (2003), 3036-3044. doi: 10.1021/ie020941f
6. Pereira, A. C., Reis, M. S., and Saraiva, P. M., “Quality control of food products using image analysis and multivariate statistical tools”, Industrial & Engineering Chemistry Research, Vol.48, No. 2, (2009), 988-998. doi:10.1021/ie071610b
7. Yan, H., Paynabar, K., and Shi, J., “Real-Time Monitoring of High-Dimensional Functional Data Streams via Spatio-Temporal Smooth Sparse Decomposition”, Technometrics, Vol. 60, No. 2, (2018), 181-197. doi:10.1080/00401706.2017.1346522
8. Bračun, D., and Sluga, A., “Stereo vision based measuring system for online welding path inspection”, Journal of Materials Processing Technology, Vol. 223, (2015), 328-336., doi:10.1016/j.jmatprotec.2015.04.023 9. Faghmous, J. H., Frenger, I., Yao, Y., Warmka, R., Lindell, A., and Kumar, V., “A daily global mesoscale ocean eddy dataset from satellite altimetry”, Scientific Data, Vol. 2, (2015), 150028. doi: 10.1038/sdata.2015.28 10. Duchesne, C., Liu, J.J., and MacGregor, J.F., “Multivariate image analysis in the process industries: A review”, Chemometrics and Intelligent Laboratory Systems, Vol. 117, (2012), 116–128. doi: 10.1016/j.chemolab.2012.04.003
11. Zou, C. Wang, Z., Zi, X., and Jiang, W.,”An efficient online monitoring method for high-dimensional data streams”, Technometrics, Vol. 57, No. 3, (2015), 374-387. doi:10.1080/00401706.2014.940089
12. Xiang, D., Qiu, P., and Pu, X., “Nonparametric regression analysis of multivariate longitudinal data”, Statistica Sinica, Vol. 23, No.2, (2013), 769-789. doi:10.5705/ss.2011.317
13. Qiu, P., and Xiang, D., “Univariate dynamic screening system: An approach for identifying individuals with irregular longitudinal behavior”, Technometrics, Vol. 56, No. 2, (2014), 248-260. doi:10.1080/00401706.2013.822423
14. Rasay, H., Fallahzaded, M.S., and Zaremehrjerdi, Y., “Application of multivariate control charts for condition based maintenance”, International Journal of Engineering, Transactions A: Basics, Vol. 31, No. 4, (2018), 597-604. doi:10.5829/ije.2018.31.04a.11 15. Akhavan Niaki, S.T., and Moeinzadeh, B.,”A multivariate quality control procedure in multistage production systems”, International Journal of Engineering, Vol. 10, No. 4, (1997), 191-208. http://www.ije.ir/article_71187.html
16. Akhavan Niaki, S.T., Houshmand, A.A., and Moeinzadeh, B., “On the performance of a multivariate control chart in multistage environment”, International Journal of Engineering, Vol. 14, No. 1, (2001), 49-64. http://www.ije.ir/article_71286.html
17. Abdella, G., Yang, K., and Alaeddini, A.,”Effect of location of explanatory variable on monitoring polynomial quality profiles”, International Journal of Engineering-Transactions A: Basics, Vol. 25, No. 2, (2012), 131-140. doi: 10.5829/idosi.ije.2012.25.02a.03
18. Megahed, F.M., Woodall, W.H., and Camelio, J.A., “A review and perspective on control charting with image data”, Journal of Quality Technology, Vol. 43, No. 2, (2011), 83–98. doi: 10.1080/00224065.2011.11917848
19. Wang, K., and Tsung, F., “Using profile monitoring techniques for a data-rich environment with huge sample size”, Quality and Reliability Engineering International, Vol. 21 No. 7, (2005), 677–688. doi:10.1002/qre.711
20. 10. Megahed, F.M., Wells, L.J., Camelio, J.A., and Woodall, W.H., “A spatiotemporal method for the monitoring of image data”, Quality and Reliability Engineering International, Vol. 28, No. 8, (2012), 967–980. doi:10.1002/qre.1287
21. Jiang, B. C., Wang, C. C., and Liu, H. C., “Liquid crystal display surface uniformity defect inspection using analysis of variance
1292 M. A. Fattahzadeh and A. Saghaei / IJE TRANSACTIONS A: Basics Vol. 33, No. 7, (July 2020) 1285-1292
and exponentially weighted moving average techniques,” International Journal of Production Research, Vol. 43, No. 1, (2005), 67–80. doi:10.1080/00207540412331285832 22. Hambal, A.M., Pei, Z. and Ishabailu, F.L., “Image noise reduction and filtering techniques”, International Journal of Science and Research, Vol. 3, (2017), 2033-2038. doi: 10.21275/25031706
23. Nomikos, P., and MacGregor, J. F., “Multivariate SPC charts for monitoring batch processes”, Technometrics, Vol. 37, No. 1 (1995), 41–59. doi:10.1080/00401706.1995.10485888 24. Fu, L.L., Chelton, D.B., Le Traon, P.Y., and Morrow, R., “Eddy dynamics from satellite altimetry”, Oceanography, Vol. 23, No. 4, (2010), 14-25. doi: 10.5670/oceanog.2010.02 25. Faghmous, J.H., Le, M., Uluyol, M., Kumar, V., and Chatterjee, S.,”A parameter-free spatio-temporal pattern mining model to catalog global ocean dynamics”, In IEEE 13th International Conference on Data Mining, IEEE, (2013), 151-160. doi:10.1109/ICDM.2013.162 26. Rahul, P.R.C., Salvekar, P.S., Sahu, B.K., Nayak, S., and Kumar, T.S., “Role of a cyclonic eddy in the 7000-year-old mentawai coral reef death during the 1997 indian ocean dipole event”, IEEE Geoscience and Remote Sensing Letters, Vol. 7, No. 2, (2009), 296-300. doi: 10.1109/LGRS.2009.2033950
27. Vic, C., Roullet, G., Carton, X., and Capet, X., “Mesoscale dynamics in the Arabian Sea and a focus on the Great Whirl life cycle: A numerical investigation using ROMS”, Journal of Geophysical Research: Oceans, Vol. 119, No. 9, (2014), 6422-6443. doi: 10.1002/2014JC009857