Hybrid Fuzzy Reference Signal Tracking Control of a Doubly Fed Induction Generator

Document Type : Original Article


1 Faculty of Technology, LSTE Laboratory, University of Mostefa Ben Boulaïd Batna 2, Algeria

2 LEB Research Laboratory, Electrical Engineering Department, University of Mostefa Ben Boulaïd Batna 2, Algeria


This paper presents a hybrid scheme for the control of active and reactive powers using the direct vector control with stator flux orientation (SFO) of the DFIG. The hybrid scheme consists of Fuzzy logic, Reference Signal Tracking (F-RST) controllers. The proposed (F-RST) controller is compared with the classical Proportional-Integral (PI) and the Polynomial (RST) based on the pole placement theory. The various strategies are analyzed and compared in terms of tracking, robustness, and sensitivity to the speed variation. Simulations are done using MATLAB software. The simulation results prove that the proposed approach leads to good performances such as the tracking test, the rejection of disturbances and the robustness concerning the parameter variations. The hybrid controller is much more efficient compared to those of PI and RST controller, it also improves the performance of the powers and ensures some important strength despite the parameter variation of the DFIG.


1. Tazil, M., Kumar, V., and Kong, S., "Three-Phase doubly-fed
induction generator: An overview", IET Electric Power
Application, (2009), 75–89. 
2. Ackermann,  T.,  and Soder,  L., "An overview of wind energystatus
3. Ackermann, T. Wind Power in Power Systems. John Wiley and
Sons, (2005). 
4. Aydin, E., Polat, A., and Ergene, L.T., "Vector control of DFIG in
wind power application". 5
 international conference on renewable
energy research and applications (ICRERA’ 2016), Birmingham,
UK, (2016). 
5. Ouada,  L.  Benaggoune,  S, and  Belkacem,  S,  "Neuro-fuzzy 
Sliding  Mode  Controller  Based on a  Brushless  Doubly  Fed
Induction Generator", International Journal of Engineering
Transactions B: Applications Vol. 33, No. 2, (2020), 248-256. 
6. Mahvash, H. Abbas, S. Taher, M. and Shahidehpour, M.
"Enhancement of DFIG performance at high wind speed using
fractional-order PI controller in pitch compensation loop"
International Journal of Electrical Power & Energy Systems, Vol.
104, (2019), 259-268. 
7. Ghoulemallah, B., Belkacem, S., Abdesselem, C., and Said, B.,
"Genetic algorithm and particle swarm optimization tuned fuzzy
PID controller on direct torque control of dual star induction motor",
Journal of Central South Univ, (2019), 251-264. 
8. Doumi,  M.,  Aissaoui,  A.G.,  Abid.  M.,  Tahour.  A and  Tahir. 
K., "Robust fuzzy gains scheduling of RST controller for a WECS
based on a doubly-fed induction generator"  Automatika,  57,  
(2016), 617–626. 1151-1164. 
9. Linyun, X., Penghan L., Fei, W., M.and Ma, J. W., "A coordinated
high-order sliding mode control of DFIG wind turbine for power
optimization and grid synchronization", International Journal of
Electrical Power & Energy Systems, Vol. 105,  (2019),  679-689. 
10. Mazouz,  F.,  Belkacem,  S.,  Drid,  S.,  Chrifi, A.L.,  and  Colak I.,
"Fuzzy  Sliding  Mode  Control of  DFIG  applied to  the  WECS".
Proceedings of the 8th International Conference on Systems and
Control, Marrakech, Morocco, (2019). 
11. Zinelaabidine,  B.,  Rachid.  T.,  Youcef.  D., and Adil.  Y., "A novel
direct torque control using the second-order continuous sliding
mode of a doubly fed induction generator for a wind energy
conversion system "  Turkish Journal of Electrical Engineering &
Computer Sciences, Vol. 25, (2017), 965-975. 
12. Mazouz, F., Belkacem S., Harbouche Y., Abdessemed R, and
Ouchen S. "Fuzzy control of a wind system based on the DFIG".
International Conference on Artificial Intelligence in Renewable
Energetic Systems IC-AIRES 2017, Tipaza Algeria, (2017).  
13. Solat,  A. R.,  Ranjbar.  A. M.,  and Mozafari.  B., "Coordinated
control of doubly fed induction generator virtual inertia and power
system oscillation damping using fuzzy logic"  International 
Journal of Engineering-Transactions A: Basics,  Vol.  32, No. 4, 
(2019), 536-547. 
14. Rocha-Osorio, C.M., Solís-Chaves, J.S. Casella Ivan, R.S.,
Capovilla, C.E., Azcue Puma, J.L. and Sguarezi Filho, A.J.
"GPRS/EGPRS standards applied to DTC of a DFIG using fuzzy–
PI controllers", International Journal of Electrical Power and
Energy Systems, Vo. 93, (2017), 365-373. 
15. Bounar, N., Labdai, S., Boulkroune, A.," PSO–GSA based fuzzy
sliding mode controller for DFIG-based wind turbine", ISA
Transactions, Vol. 85, (2019), 177-188. 
16. Benbouhenni,  H.,  Benghanem.  Z.,  and Belaidi.  A., " Neurosecond
17. Horashadizadeh, S. K., H. Zadeh, S. M. Koohestani, M. R.
Shekofteh, S .and  Erkaya, S.?"Robust model-free control of a class
of uncertain nonlinear systems using BELBIC: stability analysis and
experimental validation". Journal of the Brazilian Society of
Mechanical Sciences and Engineering, Vol. 41, No. 8, 311,
(2019). 941-964. 
18. Kiran, K., J, Kanwarjit, S.S., "Real-time simulator-based hybrid
controller of DFIG-WES during grid faults design and analysis",
International Journal of Electrical Power and Energy Systems,
Vol. 116. (2020). 762-773. 
19. Jyothirmayi,  D.,  Navyasri.  P.,  Sudhakar.  N,  Madhubabu.  A,
Ani.  S and  Saranya.  K, "Fuzzy predictive control of variable speed
wind turbines using fuzzy techniques", International Research
Journal of Engineering and Technology,  Vol.  31, No. 5,  (2018),
20. Anil, N., K.U. Prakash, G., Fernandez, C. E. "Design and
implementation of interval type-2 fuzzy logic-PI based adaptive
controller for DFIG based wind energy system". International
Journal of Electrical Power and Energy Systems, Vol. 115,
21. Saeed, K., Mahdi, S., "Adaptive fuzzy tracking control of robot
manipulators actuated by permanent magnet synchronous motors".
Computers and Electrical Engineering, Vol, 72, (2018), 100-111. 
22. Precup, R.E. Tomescu, M.L. ¸ Precup, R.E. Tomescu, M.-L.
¸"Fuzzy Logic Control System Stability Analysis Based on
Lyapunov’s Direct Method", International Journal of Computers,
Communications and Control,  Vol. IV, No. 4, (2009), 415-426. 
23. Larbi, D., Edgar, N. Sanchez, and Mohammed, B, "Real-time,
Neural Input-Output Feedback Linearization control of DFIG based
wind turbines in presence of grid disturbances", Control
Engineering Practice, Vol. 83, (2019), 151-164. 
24. Youb, L., Belkacem, S., Naceri, F., Cernat, M., and Guasch, L. P.,
"Design of an Adaptive Fuzzy Control System for Dual Star
Induction Motor Drives", Advances in Electrical and Computer
Engineering, Vol. 18, No. 3, (2018), 451-464.