Identification of Wind Turbine using Fractional Order Dynamic Neural Network and Optimization Algorithm

Document Type : Original Article


Department of Electrical Egineering, Shahid Beheshti University, Tehran, Iran


In this paper, an efficient technique is presented to identify a 2500 KW wind turbine operating in Kahak wind farm, Qazvin province, Iran. This complicated system dealing with wind behavior is identified by using a proposed fractional order dynamic neural network (FODNN) optimized with evolutionary computation. In the proposed method, some parameters of FODNN are unknown during the process of identification, so a particle swarm optimization (PSO) algorithm is employed to determine the optimal values by which a fractional order nonlinear system can be completely identified with a high degree of accuracy. These parameters are very effective to achieve high performance of FODNN identifier and they include fractional order, initial values of states and weights of FODNN, and numerical algorithm step size for solving FODNN equation. Simulation results confirm the efficiency of the proposed scheme in term of accuracy. Furthermore, comparison of the results achieved by the proposed method and those of the integer order dynamic neural network (IODNN) depicts higher accuracy of the proposed FODNN.


1. Xu, B., Chen, D., Zhang, H., Wang, F., Zhang, X. and Wu, Y.,
"Hamiltonian model and dynamic analyses for a hydro-turbine
governing system with fractional item and time-lag",
Communications in Nonlinear Science and Numerical 
Simulation,  Vol. 47, No., (2017), 35-47.
2. Magin, R.L., "Fractional calculus models of complex dynamics 
in biological tissues", Computers & Mathematics with
Applications,  Vol. 59, No. 5, (2010), 1586-1593. 
3. Pintelon, R., Schoukens, J., Pauwels, L. and Van Gheem, E.,
"Diffusion systems: Stability, modeling, and identification",
IEEE Transactions on Instrumentation and Measurement, 
Vol. 54, No. 5, (2005), 2061-2067. 
4. Soczkiewicz, E., "Application of fractional calculus in the theory
of viscoelasticity", Molecular and Quantum Acoustics,  Vol.
23, No., (2002), 397-404. 
5. Aslipour, Z. and Yazdizadeh, A., "Identification of damavand
tokamak using fractional order dynamic neural network",
Transactions of the Institute of Measurement and Control, 
Vol., No., (2018), 0142331218784108. 
6. Fateh, M., Ahmadi, S.M. and Khorashadizadeh, S., "Adaptive
rbf network control for robot manipulators", Journal of AI and
Data Mining,  Vol. 2, No. 2, (2014), 159-166. 
7. Yazdizadeh, A. and Khorasani, K., "Adaptive time delay neural
network structures for nonlinear system identification",
Neurocomputing,  Vol. 47, No. 1–4, (2002), 207-240. 
8. Goleijani, S. and Ameli, M.T., "Neural network-based power
system dynamic state estimation using hybrid data from scada
and phasor measurement units", International Transactions on
Electrical Energy Systems,  Vol. 28, No. 2, (2018), e2481. 
9. Albertini, F. and Sontag, E.D., "State observability in recurrent
neural networks", Systems & Control Letters,  Vol. 22, No. 4,
(1994), 235-244. 
10. Rovithakis, G.A. and Christodoulou, M.A., "Adaptive control of
unknown plants using dynamical neural networks", IEEE
Transactions on Systems, Man and Cybernetics,  Vol. 24, No.
3, (1994), 400-412. 
11. Poznyak, A. and Sanchez, E., "Nonlinear system approximation
by neural networks: Error stability analysis", Intelligent
Automation & Soft Computing,  Vol. 1, No. 3, (1995), 247-257. 
12. Poznyak, A., Sanchez, E. and Yu, W., "Differential neural
networks for robust nonlinear control: Identification, state
estimation and trajectory tracking, Singapore, World Scientific, 
13. Nejadmorad Moghanloo, F., Yazdizadeh, A. and Pouresmael
Janbaz Fomani, A., A new modified elman neural network with
stable learning algorithms for identification of nonlinear
systems, in Computer and Information Science, R. Lee, Editor.
2015, Springer International Publishing: Cham.171-193. 
14. Boroomand, A. and Menhaj, M., Fractional-order hopfield
neural networks, in Advances in Neuro-information
Processing, M. Köppen, N. Kasabov, and G. Coghill, Editors.
2009, Springer Berlin Heidelberg.883-890. 
15. Petras, I., "A note on the fractional-order cellular neural
networks", in International Joint Conference on Neural
Networks, Vancouver, BC, Canada. Vol., No. Issue, (2006),
16. Matsuzaki, T. and Nakagawa, M., "A chaos neuron model with
fractional differential equation", Journal of the Physical Society
of Japan,  Vol. 72, No. 10, (2003), 2678-2684. 
17. Arena, P., Fortuna, L. and Porto, D., "Chaotic behavior in
noninteger-order cellular neural networks", Physical Review E, 
Vol. 61, No. 1, (2000), 776-781. 
18. Huang, C.-d., Cao, J.-d., Xiao, M., Alsaedi, A., Alsaadi, F.E. and
Hayat, T., "Dynamical analysis of a tri-neuron fractional
network", Asian Journal of Control,  Vol., No., (2017). 
19. Liu, P., Zeng, Z. and Wang, J., "Multiple mittag leffler stability
of fractional-order recurrent neural networks", IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 
Vol. 47, No. 8, (2017), 2279-2288. 
20. Wu, A. and Zeng, Z., "Global mittag leffler stabilization of
fractional-order memristive neural networks", IEEE
Transactions on Neural Networks and Learning Systems,  Vol.
28, No. 1, (2017), 206-217. 
21. Wu, H., Wang, L., Niu, P. and Wang, Y., "Global projective
synchronization in finite time of nonidentical fractional-order
neural networks based on sliding mode control strategy",
Neurocomputing,  Vol. 235, No., (2017), 264-273. 
22. Zhang, S., Yu, Y. and Hu, W., "Robust stability analysis of
fractional-order hopfield neural networks with parameter
uncertainties", Mathematical Problems in Engineering,  Vol.,
No., (2014). 
23. Le Lay, L., "Identification fréquentielle et temporelle par modèle
non entier",  (1998),  
24. Lin, J., "Modélisation et identification des systèmes d'ordre non
entier", Université de Poitiers. UFR des sciences fondamentales
et appliquées,  (2001),  
25. Cois, O., "Systèmes linéaires non entiers et identification par
modèle non entier: Application en thermique", PhD Thesis,
University of Bordeaux 1,  (2002),  
26. Aoun, M., "Systemes linéaires non entiers et identification par
bases orthogonales non entieres", PhD Thesis, University of
Bordeaux 1,  (2005),  
27. Tepljakov, A., Fractional-order modeling and control of
dynamic systems, Springer,  (2017). 
28. Cui, R., Sheng, D., Wei, Y. and Wang, Y., "Modulating
function-based subspace identification for continuous-time
fractional order systems", in 32nd Youth Academic Annual
Conference of Chinese Association of Automation (YAC),
Hefei, China. Vol., No. Issue, (2017), 618-623. 
29. Hu, Y., Fan, Y., Wei, Y., Wang, Y. and Liang, Q., "Subspacebased
of fractional order systems from non-uniformly sampled data", International Journal of
Systems Science,  Vol. 47, No. 1, (2016), 122-134. 
30. Du, W., Miao, Q., Tong, L. and Tang, Y., "Identification of
fractional-order systems with unknown initial values and
structure", Physics Letters A,  Vol. 381, No. 23, (2017), 19431949.
31. González-Olvera, M.A., Tang, Y. and Navarro-Guerrero, G.,
"Fractional order system identification by a genetic algorithm",
in Memorias del Congreso Nacional de Control Automático
2015, Cuernavaca, Morelos. Vol., No. Issue, (2015), 304-308. 

32. Rahmani, M.-R. and Farrokhi, M., "Nonlinear dynamic system
identification using neuro-fractional-order hammerstein model",
Transactions of the Institute of Measurement and Control, 
Vol. 40, No. 13, (2018), 3872-3883. 
33. Rahmani, M.-R. and Farrokhi, M., "Identification of neurofractional
hammerstein systems: A hybrid frequency-/timedomain approach", Soft Computing, Vol., No., (2017).
34. Sierociuk, D., Sarwas, G. and Dzieliński, A., "Discrete fractional
order artificial neural network", acta mechanica et automatica, 
Vol. Vol. 5, no. 2 No., (2011), 128-132  
35. Sierociuk, D. and Petras, I., "Modeling of heat transfer process
by using discrete fractional-order neural networks", in 16th
International Conference on Methods and Models in Automation
and Robotics (MMAR). Vol., No. Issue, (2011), 146-150. 
36. Benoit-Marand, F., Signac, L., Poinot, T. and Trigeassou, J.-C.,
"Identification of nonlinear fractional systems using continuous
time neural networks", in lFAC Workshop on Fractional 
Differentiation and its Applications, The Institute of
Engineering of Porto (ISEP), Portugal. Vol. 2, No. Issue, (2006
of Conference), 402-407. 
37. Boroomand, A. and Menhaj, M.B., "On-line nonlinear systems
identification of coupled tanks via fractional differential neural
networks", in Chinese Control and Decision Conference
(CCDC '09), Guilin, China. Vol., No. Issue, (2009), 2185-2189. 
38. Boroomand, A. and Menhaj, M.B., "Fractional-based approach
in neural networks for identification problem", in Chinese
Control and Decision Conference (CCDC '09) Guilin, China.
Vol., No. Issue, (2009), 2319-2322. 
39. Ata, R., "Artificial neural networks applications in wind energy
systems: A review", Renewable and Sustainable Energy
Reviews,  Vol. 49, No., (2015), 534-562. 
40. Kennedy, J. and Eberhart, R., "Particle swarm optimization", in
Proceedings of  IEEE International Conference on Neural
Networks, Vol. 4, No. Issue, (1995), 1942-1948  
41. Asgari, S. and Yazdizadeh, A., "Robust model-based fault
diagnosis of mechanical drive train in v47/660 kw wind
turbine", Energy Systems,  Vol. 9, No. 4, (2018), 921-952. 
42. Diethelm, K., The analysis of fractional differential equations,
Lecture notes in mathematics Springer,  (2010). 
43. Diethelm, K., Ford, N. and Freed, A., "A predictor-corrector
approach for the numerical solution of fractional differential
equations", Nonlinear Dynamics,  Vol. 29, No. 1-4, (2002), 322.
44. Gholipour, R., Khosravi, A. and Mojallali, H., "Suppression of
chaotic behavior in duffing-holmes system using back-stepping
controller optimized by unified particle swarm optimization
algorithm", International Journal of Engineering Vol. 26, No.
11, (2013), 1299-1306. 
45. Fateh, M.M. and Khorashadizadeh, S., "Optimal robust voltage
control of electrically driven robot manipulators", Nonlinear
Dynamics,  Vol. 70, No. 2, (2012), 1445-1458. 
46. Rezaee Jordehi, A. and Jasni, J., "Parameter selection in particle
swarm optimisation: A survey", Journal of Experimental &
Theoretical Artificial Intelligence,  Vol. 25, No. 4, (2013), 527542.