TY - JOUR ID - 72797 TI - Optimized Fuzzy Logic for Nonlinear Vibration Control of Aircraft Semi-active Shock Absorber with Input Constraint (TECHNICAL NOTE) JO - International Journal of Engineering JA - IJE LA - en SN - 1025-2495 AU - Attaran, Behrooz AU - Zarchi, Milad AU - Toloei, A.R. AD - mechanical engineering, shahid chamran university AD - Mechanical Engineering Department, Shahid Rajaee Teacher Training University AD - Department of Aerospace Engineering, Shahid Beheshti University Y1 - 2016 PY - 2016 VL - 29 IS - 9 SP - 1300 EP - 1306 KW - Fuzzy logic intelligent method KW - Bees optimization algorithm KW - Minimum error criteria procedure KW - Aircraft semi KW - active landing gear KW - numerical simulation DO - N2 - Landing impact and runway unevenness have proximate consequence on performance of landing gear system and conduce to discomfort of passengers and reduction of the pilot’s capability to control aircraft. Finally, vibrations caused by them result in structure fatigue. Fuzzy logic controller is used frequently in different applications because of simplicity in design and implementation. In the present paper, this control approach is performed by minimum error criteria procedure and bees algorithm as the optimization technique for the model of semi-active suspension system that chooses damping performance of shock absorber at touchdown to be the purpose of control on landing gear and its efficiency is evaluated with the competence of passive control. Results of numerical simulation by matlab/simulink software indicate that the force induced to body and the vertical vibration of fuselage have important improvement )60% and 50%( for fuzzy intelligent method optimized by bees algorithm compared to passive approach which lead to increase in quality of landing, easiness of passengers and structure’s fatigue life in various operation conditions. UR - https://www.ije.ir/article_72797.html L1 - https://www.ije.ir/article_72797_5bcfc586685e5c0983faed3b10edf369.pdf ER -