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A B S T R A C T  
 

 

In this study, an artificial neural network was used to predict the minimum force required to single 

point incremental forming (SPIF) of thin sheets of Aluminium AA3003-O and calamine brass 
Cu67Zn33 alloy. Accordingly, the parameters for processing, i.e., step depth, the feed rate of the tool, 

spindle speed, wall angle, thickness of metal sheets and type of material were selected as input and the 

minimum vertical force component was selected as the model output. To train the model, a Multilayer 
perceptron neural network structure and feed-forward backpropagation algorithm have been employed. 

After testing many different artificial neural network (ANN)  architectures, an optimal structure of the 

model i.e. 6-14-1 was obtained. The results, with a correlation relation between experiments to 
predicted force,-0.215 mean absolute error, show a very good agreement. 

doi: 10.5829/ije.2018.31.01a.13 

 

 
1. INTRODUCTION1 
 

Sheet metals are manufactured by the rolling processes. 

Sheet metals have various applications starting from a 

simple sheet metal tray to complicated parts used in 

aircraft, automotive, construction. The other 

applications are household appliances, food & beverage 

containers, boilers, kitchen equipment, office equipment 

etc. A flat sheet metal is formed into complicated shapes 

by using the die and punch. The sheet metals are ductile 

in nature. They can be formed only to a certain limit. 

Beyond these limit failures like necking and fracture 

occurs. Many research groups are still investigating 

process feasibility and developing finite element (FE) 

codes for the SPIF. Several analysis tools are described 

in the proceedings [1-4]. Theoretically, the Yielding 

criteria, strains along with its hardening and thickness 

variations during the deep drawing of forming process 

has been established [5] which helps to understand the 

straining behavior of the thin sheet during incremental 

sheet metal forming (ISF). In this technique, no need of 

die and punch as in case of deep drawing. Of course, the 

deformation is incremental, local in nature and gradual. 

                                                           
*Corresponding Author’s Email: moraon@bitmesra.ac.in (M. Oraon) 

These enhance the limiting strain during ISF. It is a 

growing process; therefore, a wide analysis is required 

to develop the theory of incremental forming [6, 7]. At 

present, a number of research works have been carrying 

out in this field to enhance the process capability of 

SPIF. The conventional press forming processes 

become costlier for even small batch production 

because of the dedicated punch & die, hydraulic press 

required for forming. In conventional forming, the 

varying strain path and severe strains reduce the 

formability of complex shapes. These types of problems 

can be resolved by using SPIF. Early work in SPIF 

indicated that the maximum formable wall angle could 

be a good indicator for material formability [8]. 

The formability involution of aluminum grade Al 

1050 using PAM-STAM software package to analyze 

the behavior of incremental forming on aluminum foils 

[9] and verified by using FEM [10]. The DHP 

(deoxidized high phosphorous) copper and AISI 304 

steel sheets have been formed through ISF to evaluate 

the process suitability [11]. The ball end tool used in 

SPIF which moves incrementally in the predetermined 

path until the end of the program [12], further micro-

forming using pointed tools [13] and conical end tool 

has been successfully done on ISF. A FEM model 
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developed on ABAQUS to predict the behaviour of the 

sheet during ISF to analyse the effect of process 

parameters like advancing speed, forming in the 

characteristics of the parts (thickness, geometrical 

accuracy, roughness) [14]. The formability evaluation 

on negative ISF has been carried out [15] on pure 

titanium in cold state ISF [16] and on annealed and pre-

aged aluminum AA-2024 grade sheets [17] with varying 

process parameters. The influence of process parameters 

on the forming forces have experimentally investigated 

and analytical results demonstrating the relationship 

between the respective process parameters and the 

induced forces [18-22]. An inverse method has been 

done for adjusting the material parameters for SPIF by 

FEM simulations called ‘the line test’ on aluminium 

alloy AA3103 with classical tests and compared with 

parameters accuracy of the tool force prediction [23] 

followed by impact of forming parameters on steel 

DC05 have investigated and confirms forming forces 

mostly dependent on the size of the wall angle, tool 

diameter and vertical step sizes of the tool [21]. The 

constitutive laws (an elastic-plastic law coupled with 

various hardening models) confirms the thickness of the 

metal sheet which is a crucial parameters for prediction 

of an accurate force [24]. Three level box-behnken 

design of experiments (DOE) approach correlated with 

quadratic mathematical models for the considered 

responses i.e. minimizing sheet thinning rate and the 

punch loads generated in this forming process [25]. 

 

 

2. EXPERIMENTAL INVESTIGATION: MATERIAL, 
TOOL, AND MACHINE 
 
2. 1. Material         The miniaturization trend always 

finds part with high quality; the body part of aluminium 

and brass are very demanding in many industries such 

as aerospace, automobile etc. therefore, commercially 

available AA 3003-O and calamine brass Cu67Zn33 

alloy are taken for experients. The composition of 

constituents on samples has been found by using scan 

electron microscopy (SEM). The SEM results shown in 

Table 1. 

The ultimate tensile strength of both metals have 

been tested on “INSTRON” Series IX automated 

materials testing system in the department of polymer 

engineering, Birla Institute of Technology, Mesra. The 

sample is prepared as per American society for testing’s 

and materials (ASTM) standard E8 as shown in Figure 1 

and corresponding stress-strain curve in Figure 2. 

 
2. 2. Forming Tool       A cylindrical rod of  40C6 steel 

of 07 mm diameter was used as tool. One face of the rod 

was grooved in such a way that the half part of 06 mm 

diameter bearing ball inserted in the groove (Figure 3). 

TABLE 1. Composition of constituent in AA3003 and 

Cu67Zn33 alloy 

Constituent (%) AA3003 Cu67Zn33 

Al 98.12 - 

Si 0.628 - 

Fe 0.705 - 

Cu 0.05 66.90 

Sn - - 

Co 0.08 - 

Mg 1.2 - 

Zr 0.05 - 

Zn - 35.06 

Pb - 0.01 

 

 

 
Figure 1. Samples for ultimate tensile testing of both AA3003 

and Cu67Zn33 alloy 

 
 

 
Figure 2. Stress-strain curves of test sample of AA3003 and 

Cu67Zn33 alloy 

 

 

 
Figure 3. Preparation of forming tool and final shape of 

forming tool 
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Once the bearing ball is worn out due to forming, it can 

be replaced easily to a new bearing ball which results 

the saving of new tool preparation and manufacturing 

cost. 

 

2. 3. SPIF Machine        The SPIF is carried out on 

CNC vertical milling center MIKROTOOLS DT-110 

shown in Figure 4 in the Department of Production 

Engineering, Birla Institute of Technology, Mesra, 

India. The machine having specifications such as 

Travel: x-axis: 200 mm, y-axis: 100 mm and z-axis: 100 

mm, Spindle speed: 0 -3000, Feed rate: 1-2000 mm/min 

and Position accuracy: +/-1 micron/100 mm. 

 

 

3. EXPERIMENTAL DESIGN: DOE 
 

The forces imposed by the tool on the clamped 

worksheet has been measured through Kistler 9265B 

six-component force dynamometer shown in Figure 5. It 

is connected with a multichannel charge amplifier 

5017A which have the capacity to measure the three 

force components i. e. 𝐹𝑥, 𝐹𝑦, and 𝐹𝑧 in the range of -15 

to 30 KN. In the present study, the online signals of 

only vertical force component 𝐹𝑧 captured. 

The experiments have been conducted with the aim 

to identify the relation that exists between each 

parameter and the minimum veritcal force component 

𝐹𝑧. The taghchi design of experiment (DOE) is adopted 

for experiments. The experimental set has been 

designed according to the orthogonal array of 𝐿32 with 

two levels.   

 

 

 
Figure 4.CNC machine and SPIF set-up for experiment 

 

 

 
Figure 5. Arrangement of force dynamometer during 

incremental forming 

The input parameters 𝑇𝑑, ∆𝑧, 𝑓, 𝑅, 𝜃, 𝑇 and 𝑀 indicates 

tool end diameter, step depth, the feed rate of tool RPM, 

wall angle, the thickness of metal and the types of 

material respectively. These input variables are chosen 

for experiemnts based on litrreture review and the level 

of input variables are set by trail and error pivot 

experiments. The responses of vertical force component 

𝐹𝑧 are shown in Table 2. 

 

 

4. STATISTICAL ANALYSIS OF THE VERTICAL 
FORCE COMPONENT 𝑭𝒛  

 

The statistical analysis is carried out with 95% 

confidence level by using Minitab 17.0.1 version for 

finding the significance of input variables. The “smaller 

is better” approach was chosen because the porpuse is to 

perform SPIF with low force component 𝐹𝑧. 

𝐹𝑧  = −10𝑙𝑜𝑔
1

𝑛
 ∑ 𝑦𝑖𝑗2

𝑛
𝑖=1   (1) 

where,𝑦𝑖𝑗 is the observed response value. 

The tool end diameter 𝑇𝑑 was same for all 

experiments, therefore it is kept constant. Figure 6 

corresponds to the main response plot for vertical force 

component 𝐹𝑧. It shows that the suitable combination of  

input variables for SPIF with minimum force as ∆𝑧 = 

0.1 mm, 𝑓= 20 mm/min, 𝑅 = 2000, 𝜃 = 15
0, 𝑇 = 0.4 mm, 

and 𝑀= Cu67Zn33 alloy respectively. 

The analysis of variance ANOVA [26] of force 

component 𝐹𝑧 is tabulated in Table 3. It indicates that 

the significance of input variables for SPIF with low 

force component 𝐹𝑧. Higher significance for SPIF with 

low 𝐹𝑧 are found as wall angle 𝜃 (P=0.000) and step 

depth ∆𝑧 (P=0.001) whereas other input variables are 

not significant for the SPIF. As per ANOVA, the SPIF 

of both materials should be carried out by keeping low 

wall angle and low step depth. The interaction of input 

variables i. e. feed rate and wall angle  (p= 0.014) and 

RPM with the types of material (P=0.015)  shows their 

significance for low 𝐹𝑧. 

 

 

 
Figure 6. Response of input variables on vertical force 

component 𝐹𝑧 
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TABLE 2.The input parameters for experiments and output response i.e. vertical force component 𝐹𝑧 

Exp. 

No. 

Tool End Diameter 

(𝑻𝒅) (𝒎𝒎) 

Step depth 

(∆𝒛) (𝒎𝒎) 
Feed rate 

(𝒇) (𝒎𝒎) 
RPM (𝑹) 

Wall angle 

(𝜽) (°) 

Tickness of metal 

(𝑻) (𝒎𝒎) 

Type of 

material (𝑴) 
Minimum𝑭𝒛 

1 

0.6 

0.1 20 500 15 0.2 AA3003 3.489 

2 0.1 20 500 15 0.2 Cu67Zn33 3.723 

3 0.1 20 500 45 0.4 AA3003 12.567 

4 0.1 20 500 45 0.4 Cu67Zn33 30.275 

5 0.1 20 2000 15 0.4 AA3003 3.324 

6 0.1 20 2000 15 0.4 Cu67Zn33 2.044 

7 0.1 20 2000 45 0.2 AA3003 12.498 

8 0.1 20 2000 45 0.2 Cu67Zn33 13.321 

9 0.1 100 500 15 0.4 AA3003 3.021 

10 0.1 100 500 15 0.4 Cu67Zn33 5.286 

11 0.1 100 500 45 0.2 AA3003 22.125 

12 0.1 100 500 45 0.2 Cu67Zn33 8.972 

13 0.1 100 2000 15 0.2 AA3003 8.483 

14 0.1 100 2000 15 0.2 Cu67Zn33 6.699 

15 0.1 100 2000 45 0.4 AA3003 6.097 

16 0.1 100 2000 45 0.4 Cu67Zn33 7.934 

17 0.7 20 500 15 0.4 AA3003 3.398 

18 0.7 20 500 15 0.4 Cu67Zn33 9.091 

19 0.7 20 500 45 0.2 AA3003 40.985 

20 0.7 20 500 45 0.2 Cu67Zn33 42.968 

21 0.7 20 2000 15 0.2 AA3003 7.415 

22 0.7 20 2000 15 0.2 Cu67Zn33 5.848 

23 0.7 20 2000 45 0.4 AA3003 48.364 

24 0.7 20 2000 45 0.4 Cu67Zn33 37.994 

25 0.7 100 500 15 0.2 AA3003 89.904 

26 0.7 100 500 15 0.2 Cu67Zn33 3.321 

27 0.7 100 500 45 0.4 AA3003 25.128 

28 0.7 100 500 45 0.4 Cu67Zn33 42.724 

29 0.7 100 2000 15 0.4 AA3003 89.823 

30 0.7 100 2000 15 0.4 Cu67Zn33 6.353 

31 0.7 100 2000 45 0.2 AA3003 20.965 

32  0.7 100 2000 45 0.2 Cu67Zn33 35.022 

 

 
TABLE 3. Analysis of variance for vertical force component 

𝐹𝑧 

SOURCE DF Seq SS Adj MS F P 

∆𝑧 1 626.12 626.119 21.65 0.001 

𝑓 1 35.44 35.444 1.23 0.294 

𝑅 1 2.21 2.207 0.08 0.788 

𝜃 1 785.82 785.825 27.18 0.000 

𝑇 1 40.51 40.508 1.40 0.264 

𝑀 1 34.51 34.512 1.19 0.300 

∆𝑧 * 𝑓 1 21.07 21.071 0.73 0.413 

∆𝑧 * 𝑅 1 12.11 12.112 0.42 0.532 

∆𝑧 * 𝜃 1 0.35 0.352 0.01 0.914 

∆𝑧 * 𝑇  1 48.95 48.953 1.69 0.222 

∆𝑧 * M 1 0.92 0.923 0.03 0.862 

𝑓 * R 1 3.50 3.499 0.12 0.735 

𝑓 * 𝜃 1 258.69 258.692 8.95 0.014 

𝑓 * 𝑇 1 93.39 93.386 3.23 0.103 

𝑓 * 𝑀 1 4.83 4.831 0.17 0.691 

𝑅 * 𝜃 1 41.27 41.271 1.43 0.260 

𝑅 * 𝑇 1 8.28 8.284 0.29 0.604 

𝑅 * 𝑀 1 248.14 248.137 8.58 0.015 

𝜃 *  𝑇 1 98.15 98.153 3.39 0.095 

𝜃 * 𝑀 1 0.39 0.387 0.01 0.910 

𝑇 * 𝑀 1 7.40 7.401 0.26 0.624 

Error 10 289.15 28.915   

Total 31 2661.21 
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These input variables must be controlled during the 

SPIF of aliminum AA3003-O and Cu67Zn33 brass 

alloy. 
 

 

5. VALIDATION OF EXPERIMENTAL RESULTS OF 
FORCE COMPONENT THROUGH ARTIFICIAL 
NEURAL NETWORK (ANN) 
 

Artificial neural network (ANN) is a computer-based 

numeric solution for optimisation. ANNs are considered 

as nonlinear statistical data modeling tools where the 

complex relationships between inputs and outputs are 

modeled without having a complete knowledge of 

relationships between inputs and outputs [27, 28]. 

However, to generate a valid model, the large amount of 

data is required for its training and testing, 

consequently, an extensive period of time is needed for 

a standard ANN. The better ANN analysis constitutes 

the network configurations and factors. Therefore, it is 

required to fix the factors during the investigation. Also, 

over-fitting should be avoided during the training phase. 

The dataset for validation (which is independent of the 

training set) recommended for measuring the error 

during the analysis. The neural network (NN) stops 

when the value of error function is minimum (early 

stopping method). 

In the manufacturing process, the output data sets 

may vary due to assignable causes. Consequently, in 

ANN, the original dataset putting in training and test 

sets. Properly trained networks tend to give meaningful 

answers with inputs parameters that they have never 

seen. Typically, the introduction of new input leads to 

an output like the correct output for input vectors used 

previously in training and that is like the new input 

being presented. This generalization property makes it 

possible to train a network on a representative set of 

input/output pairs and get very good results without 

training the network on all possible input/output pairs. 

A variety of ANN network algorithms has been 

proposed by researchers for the modeling purpose such 

as Elman BP, Time-delay BP, Cascade-forward BP, 

Radial Basis, Self-Organizing Map, and Perception. The 

feed forward back propagation (FFBP) algorithm [29-

32] is widely utilized by investigators for the prediction 

of surface roughness in SPIF. The BPNN is also applied 

by the researchers in different manufacturing field such 

as milling, cutting, turning operations, even in hardness 

of Al2024-multiwall carbon nano tube [33] for finding 

the error such as mean square error (MSE), mean 

absolute error (MAE),root mean square error (RMSE) 

etc. 

For the present research work, feed forward (FF) 

neural network structure 6-6-1 is developed (Figure 7). 

The sigmoidal transfer used for hidden layer neurons 

whereas the linear activation function used for output.  

 
Figure 7. Structure of 6-6-1 feed-forward network 

 

 

A three-layer feed-forward network with sigmoid 

hidden neurons and linear output neurons is developed 

by using MATLAB, version 7.10.0.499 (R2010a) 

(Figure 8). Two stopping criteria has been adopted, i.e., 

sufficient accuracy on the test set and the maximum 

number of iteration (the first activated).  

The ANN model adopted for the present study is 

summarised below. 

 

5. 1. A Network Model for 𝑭𝒛:      Network Algorithm: 

FFBP 
Training: Levenberg Marquardt (LM) 

No. of layers: 3 

Output: 1  

No of neurons : 0 to10  

Performance: Mean square error (MSE) 

Training function: TRAINLM 

Hidden layer transfer function: Tran sigmoid  

Output layer transfer function: Pure linear  

Adaption of learning rate: LEARNGDM 

Figure6 shows the single-layered feed forward (FF) 

network with one hidden layer. The input to unit𝑥 in 

hidden layer is expressed in Equation (2), 

𝑛𝑒𝑡_ℎ𝑖𝑑𝑑𝑒𝑛 =  ∑ 𝑤𝑗,𝑥𝑖𝑗 + 𝑏𝑥
𝑗
𝑗=1   (2) 

where, 𝑤𝑗,𝑥 is the weight between the input and hidden 

neurons and𝑖𝑗 represents the  value of the input which 

considered for SPIF (Table 3). 𝑏𝑥 represents the biases 

on the hidden nodes. 

 

 

 
Figure 8. Architecture of two-layer BPNN for surface 

roughness prediction 
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The net input to unit 𝑧 in the output layer is expressed in 

Equation (3): 

𝑛𝑒𝑡_𝑜𝑢𝑡𝑝𝑢𝑡 =  ∑ 𝑣𝑥,𝑧ℎ𝑥 + 𝑐𝑧
𝑥
𝑥=1   (3) 

where, 𝑣𝑥,𝑧is the weight between hidden and output 

neurons, ℎ𝑥is the value of the output for hidden nodes, 

and 𝑐𝑧 represents the biases on the output nodes.  

From the output for hidden nodes (Equation (3)) 

obtained by resolving Equations (2) and (3): 

ℎ𝑘 = 𝑓(𝑛𝑒𝑡_ℎ𝑖𝑑𝑑𝑒𝑛)  (4) 

Finally, the output for output nodes as in Equation (5): 

𝑜𝑧 = 𝑓(𝑛𝑒𝑡_𝑜𝑢𝑡𝑝𝑢𝑡) =  𝑅𝑎  (5) 

where, 𝑓 is the transfer function. 

In the present study, the hyperbolic tangent sigmoid 

transfer function (Tansig) and linear transfer function 

(Purelin) are used at hidden layer and output layer 

respectively. The 𝑅𝑎 obtained from each experiment are 

taken as output whereas different combinations of input 

parameters (Table 4) are considered as input for 

predicting surface roughness through ANN. Randomly, 

the 60% of experimental data are used for training 

whereas 20% data are used for testing and rest 20% are 

used for validation of the BP model without normalizing 

the input data.  

 

 

6. RESULTS AND DISCUSSION 
 

The output 𝐹𝑧 obtained from experiments of various 

combinations was taken as input for the development of 

BPNN. The predicted 𝐹𝑧 from the NN has been 

compared with the experimental 𝐹𝑧. The 60% of whole 

data was used for training. The training stopped after 5 

iterations. The result is shown in Figure 9. It indicated 

that the train data best validated at epoch 5 with a value 

360.7869. 

Finally, putting the entire data set through the 

network (training, validation, and test) and performed a 

linear regression between the network outputs. The 

outputs are shown in Figure 10. It seems that the input 

data for NN is to track the targets reasonably well. The 

training data set of accuracy 0.960, test data set of 0.704 

and validation data set of 0.938 achived through ANN. 

The overall R-value comes as 0.93. It shows that by 

using LM algorithm performance of the neural network 

R-value after simulation comes as 0.93%. 

The minimum force 𝐹𝑧 of each experiment was 

treated as input data for training, test, and validation in 

the BPNN. The predicted 𝐹𝑧 and corresponding error 

presented in Table 4. The predicted 𝐹𝑧 through ANN is 

found very close to the experimental data set and found 

the MAE of -0.215. 

 
Figure 9. Performance plot of back propagation neural 

network 

 

 

 
Figure 10. Regression plot of back propagation neural 

network 

 

 

7. CONCLUSION 
 

The prediction of process limits in SPIF is very difficult 

since many variables are involved. Although it is 

characterized by a localized deformation, the 

experiments show different process performances, 

depending on the process parameters. For this reason, 

during the last decades, several studies, considering this 

specific process, have been carried out. On the other 

hand, the achievement of desired surface roughness with 

SPIF is a major issue.   

Optimal designing of the tool and application of 

suitable input parameters improves the quality of the 

finished part with low 𝐹𝑧. The selection of desired 

machine corresponding to the condition of the process 

also significant during SPIF.  
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TABLE 4. Comparision of experimental and predicted 𝐹𝑧 

Exp. Run Experiment 𝑭𝒛 ANN 𝑭𝒛 Error Mean error 

1 3.489 3.489 0 -0.215 

2 3.723 3.723 0  

3 12.567 12.567 0  

4 30.275 30.275 0  

5 3.324 3.324 0  

6 2.044 2.036 0.007  

7 12.498 15.334 -2.836  

8 13.321 12.289 1.032  

9 3.021 3.021 0  

10 5.286 5.286 0  

11 22.125 14.412 7.704  

12 8.972 8.972 0  

13 8.483 8.421 0.062  

14 6.699 2.059 4.64  

15 6.097 6.097 0  

16 7.934 8.133 -0.199  

17 3.398 3.546 --0.048  

18 9.091 9.090 0.001  

19 40.985 40.732 0.253  

20 42.968 42.281 0.687  

21 7.415 7.415 0  

22 5.848 2.068 3.779  

23 48.364 48.364 0  

24 37.994 37.994 0  

25 89.904 89.904 0.099  

26 3.321 4.322 -1.001  

27 25.128 52.468 -27.34  

28 42.724 42.724 0  

29 89.823 89.823 0  

30 6.353 6.353 0  

31 20.965 20.965 0  

32 35.022 28.754 6.268  

 

 

So, initial prediction of 𝐹𝑧 in the process will help the 

designer to select the best materials and processing 

technique. In such a condition, the ANN can be a great 

device which reduces both cost and time. The prediction 

of any output without conducting the experiments can 

be done with the help of ANN by adopting previuos 

experimental data set. 
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هچكيد
 

 

( SPIF) ای مرحله تک تشکیل برای نیاز مورد نیروی حداقل بینی پیش برای مصنوعی عصبی شبکه یک مطالعه، این در

 اساس، این بر. گرفت قرار استفاده مورد Calamine برنج Cu67Zn33 آلیاژ و AA3003-O آلومینیوم نازک های ورق

 و فلزی های ورق ضخامت دیوار، زاویه واشر، سرعت ابزار، تغذیه سرعت قدم، عمق مثال، عنوان به پردازش، پارامترهای

. شد انتخاب مدل خروجی عنوان به عمودی نیروی اجزای حداقل و شد انتخاب ورودی عنوان به شده انتخاب مواد نوع

 پس. است شده استفاده جلو به عقب بازگشت الگوریتم و Multilayer پروپرتن عصبی شبکه ساختار مدل، آموزش برای

. آمد بدست 1-14-6 مدل از ای بهینه ساختار ،(ANN) مصنوعی عصبی های شبکه های معماری از بسیاری آزمایش از

 توافق که دهد می نشان مطلق، خطای میانگین 0.215- بینی، پیش نیروی به ها آزمایش بین همبستگی رابطه یک با نتایج،

 .است خوبی بسیار

doi: 10.5829/ije.2018.31.01a.13 

 

 


