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A B S T R A C T  
 

 

The Newmark method is an effective method for numerical time integration in dynamic problems. The 

results of Newmark method are function of its parameters (β, γ and ∆t). In this paper, a stationary mode 
I dynamic crack problem is coded in extended finite element method )XFEM( framework in Matlab 

software and results are verified with analytical solution. This paper focuses on effects of main 

parameters in Newmark method for dynamic XFEM problems. Also use of the response surface 
method (RSM) a regression model is presented for estimating error of dynamic stress intensity factors 

(DSIF) with high validity according to results of analysis of variance (ANOVA). This work enables 

one to understand the effect of Newmark parameters on error of DSIFs and to find optimum β and γ for 
a determined number of time steps (N). This procedure is highly effective in order to  manage the 

computational cost and enhance the accuracy at the desired domain. The effect of the considered 

parameters on error, is investigated using RSM in Minitab software and optimum state for 

minimization of errors is illustrated. 

doi: 10.5829/ije.2018.31.01a.08 
 

 

NOMENCLATURE   

dyn

IK  Mode I dynamic stress intensity factor Greek Symbols 

dyn

IIK  Mode II dynamic stress intensity factor 0  Applied stress (MPa) 

ct  The time when applied stress wave reaches the crack tip for the first time (s)   Density (kg/m3) 

t  Time step (s)   Poission’s ratio 

3 cN t t   Number of time steps   Parameter of Newmark method 

1E  Error of dynamic stress intensity factors in a vicinity of time 
ct (%)   Parameter of Newmark method 

2E  Error of dynamic stress intensity factors in a vicinity of time 3 ct (%) Superscripts 

dC  Dilatational wave speed ( m/s) aux  Auxiliary fields 

( )H x  Heaviside or jump function dyn  Dynamic 

lF  Singular or asymptotic enrichment functions Subscripts  

E  Young modulus of elastisity (GPa) in  Interaction 

 
1. INTRODUCTION1 
 

Dynamic problems consist of a wide range of 

engineering problems in various fields [1, 2]. Finite 

element method is one of interesting numerical methods 

                                                           
*Corresponding Author’s Email: s.rashahmadi@urmia.ac.ir (S. 

Rashahmadi) 

for solving fracture mechanics problems[3, 4]. Dolbow 

et al. [5] proposed a method to model crack in 

framework of finite element method without remeshing 

and called it extended finite element method. Stolarska 

et al. [6] introduced coupling of level set method (LSM) 

and XFEM for crack growth problems. Belytschko et al. 

[7] used XFEM in dynamic crack propagation. Rethore 

et al. [8] studied stability during dynamic crack growth. 
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Mohammadi [9] developed dynamic XFEM for analysis 

of composites. It is mandatory to select an accurate time 

integration algorithm in simulation of a dynamic 

problem. Time integration methods include the explicit 

and implicit approaches with different complexity, 

speed, efficiency and accuracy. Explicit approach is 

simple and fast, but it is less accurate and suffers from 

stability conditions. Implicit approaches are more 

accurate and stable, but they are computationally more 

expensive [9]. In wave propagation studies, small time 

steps must be used in order to represent the nature of 

problem. Therefore, very small time increments must be 

used, which usually enhances computation costs [10]. 

Implicit methods need a balance between the accuracy 

and the computation time [11]. Alamatian   

[12]introduced implicit multi time step integration on 

dynamic analyses with constant time step. Alamatian 

[13] presented an implicit time integration method with 

higher order accuracy for dynamic problems. Shojaee et 

al. [14] studied on an implicit time integration method 

which its advantage is eliminating conditional stability. 

The results of Newmark method are function of its 

parameters (β, γ and ∆t). Stability of results depends on 

values of β, γ and their accuracy depends on values of β, 

γ and time increment (∆t). The computation time is only 

depend on ∆t. A huge part of errors in dynamic XFEM 

problems are errors due to time integration method. 

Control and mangement of these errors is an important 

challenge. Analytical solution of benchmark problems 

which usually used to verify numerical approaches, are 

based on semi-infinite or infinite plate assumption. In 

order to remove the effect of reflected stress wave on 

the crack tip, the numerical simulation of finite plates is 

perfomed until the reflected dilatational wave from 

another edge of the plate reaches the crack tip. The 

highest errors of dynamic stress intensity factors occur 

when: 

1. Initial stress wave reaches the crack tip, which 

highest error in a vicinity of this time is called E1 in 

the present work. 

2. Reflected wave from the end of the plate reaches the 

crack tip, and most error in a vicinity of this time is 

called E2. 

In this paper a new look at Newmark method from 

statistical point of view is demonstrated. The aim of this 

study is to determine the effects of parameters of 

Newmark method (i.e. β, γ and N) on the errors E1 and 

E2. A dynamic fracture mechanics problem in the 

framework of XFEM using the response surface 

methodology (RSM) was studied. In addition, 

regression models for errors E1 and E2 are presented. 

 

 

2. GOVERNING EQUATION AND FORMULATION 
 
2.1. Basics of XFEM Extended finite element 

method is based on enrichment of displacement field. In 

XFEM, finite element mesh is produced regardless of 

existence and location of discontinuity. Nodes around 

discontinuity are selected to be enriched; thus, some 

additional degrees of freedom are added to classical 

finite element at selected nodes due to enrichment of 

displacement field. The displacement field for a domain 

containing discontinuity is exprssed as Equation (1) [3, 

5]: 
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 (1) 

In which I is the set of total nodes, J is the set of red 

squared nodes and K is the set of blue circled nodes as 

shown in Figure 1. H(x) is Heaviside or jump function 

and used for nodes of completely cut elements: 
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The functions  lF x ( 1,2,3,4)l  are the crack tip 

enrichment functions and are defined as: 
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(3) 

where r and θ are the polar coordinates in the local 

crack tip coordinate system. 

In XFEM implementation two points must be 

considered: 

1. Using Equation (1), at node xi will have  i iu x u

which is a contradiction. A simple idea to solve this 

matter is shifting enrichment functions: 
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(4) 

2. Shared nodes between completely cut elements and 

crack tip elements must be enriched only by crack 

tip enrichment functions. 

 

 
Figure 1. Selection of enriched nodes 
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2.2. XFEM Dynamic Equation of Motion    The weak 

form of momentum equation of the initial/boundary 

value problem for a body with traction-free crack Γc 

shown in Figure 2 stated as follows: 

. . .

t

u ud d t ud    
  

     
 

(5) 

The discretized form of Equation (5) in framework of 

XFEM ignoring damping effects would be given as 

follows: 

       h hM u K u F   (6) 

The mass matrix M, stiffness matrix K, external load 

vector F and nodal degrees of freedom u for an element, 

respectively are defined as follows: 

M M M

M = M M M

M M M

uu ua ub

ij ij ij

e au aa ab

ij ij ij ij

bu ba bb

ij ij ij
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 
 
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 

 
(7) 

K K K

K = K K K

K K K

uu ua ub

ij ij ij

e au aa ab

ij ij ij ij

bu ba bb

ij ij ij

 
 
 
 
 

 
(8) 

 F = F ,F ,F
T

e u a b

i i i i
 (9) 

 u = , ,
Th u a b  (10) 

The components of mass matrix, stiffness matrix and 

force vector, respectively are given as follows: 

( ) ( )d
e

T

ij i jM h N N  


 
 

 , , ,u a b    (11) 

(B ) C(B )d
e

T

ij i jK h  



 
 

 , , ,u a b    (12) 

( )T

i iF N td 



 
 

 , ,u a b   (13) 

where matrices B and N for a four node element 

( 1,2,3,4)i  and using four asymptotic functions 

( 1,2,3,4)l   are stated as Equations (14) to (19). 

 

 
Figure 2. Initial configuration of domain 
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(19) 

 
2.3. Newmark Time Integration Method    After 

construction of matrices, the Newmark time integration 

algorithm is used to obtain nodal accelerations, 

velocities and displacements at each time step, 

respectively as below[15]: 
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(20) 

1 1(1 )n n n nU U tU tU         (21) 

2
2

1 1 1(1 2 )
2

n n n n n

t
U U tU U t U   


     

 (22) 

where,β and γ are constant parameters which accuracy 

and stability of numerical scheme depends on their 

values. Some of common numerical schemes with 

different values of β and γ has been reported in 

reference [16] as summarized in Table 1: 

 
TABLE 1. Some of numerical schemes 

Scheme β γ 

Central explicit 0 0.5 

Average acceleration 0.25 0.5 

Backward 1 1.5 

Linear acceleration 0.1 0.5 

Galerkin 0.8 1.5 

Fox Goodwin 1/12 0.5 

Linear three level difference 0.5 0.5 
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In XFEM problems, central explicit and average 

acceleration (implicit mean acceleration) schemes were 

used [10, 17]. 

 

2.4. Stress Intensity Factors Computation  
Interaction integral is derived via a two-field problem 

consisting of state 1, the actual field and state 2, the 

auxiliary field: 

 1 2 (1) (2) (1,2)J J J I


    (23) 

A simple to implementation way for calculation of 

dynamic stress intensity factors is the domain-

independent form of interaction integral presented by 

Rethore [8]: 

, , , ,( ) ( )dyn aux aux aux aux

in k j ml m l l l kj ij i k ij i k

A

I q u u u u u dA          

, , , , ,   ( ) ( )aux aux aux aux

k ij j i k i i k i i k i i k

A

q u u u u u u u dA        
 (24) 

The virtual extension field q is a smooth function 

tangent to the crack faces, varying from q=0 at the 

exterior boundary Γ at Figure 3 to q=1 near the crack 

tip. 

The interaction integral is related to dynamic stress 

intensity factors in a plane strain condition as follows: 

22(1 )
( )in dyn aux dyn aux

I I II III K K K K
E


   (25) 

dyn

IK is evaluated by defining the auxiliary state as the 

pure mode I ( 1aux

IK  and 0aux

IIK  ) and in a similar way, 

dyn

IIK  can be obtained. 

 

 

3. DESIGN OF EXPERIMENTS (DOE) 
 

In order to optimize response variables in presence of 

various factors, design of experiments (DOE) was used. 

The most important objective in the DOE is to achieve 

the desired response with the lowest number of 

experiments [18]. 

 

 

 
Figure 3. The contour Γ and its interior area A 

In this study, for optimization of process, investigation 

the regression model and finding the effect of variable 

parameters on the output, response surface method 

(RSM) was used. 

The RSM regression model is generally quadratic 

full equation or reduced form of it is stated as Equation 

(26) [19]: 

2

0 1 2 3

1 1

n n

i i i j

i i i j

y x x x x    
 

      
 

(26) 

In Equation (26), y is the response variable, 
0 , 

1 , 
2  

and 
3  are constant, linear, quadratic and interaction 

coefficients, respectively. Also xi and xj are the 

independent variables and   is the statistical error. 

After determining the regression model, efficiency 

of the model is checked using R
2
 as Equation (27) that 

can be obtained from analysis of variance (ANOVA) 

[20]. 

2 1 r

T

SS
R

SS
   

(27) 

where,
rSS  and 

TSS  are the residual and total sum of 

squares, respectively. 

In the present study, β, γ and N are considered as 

variable parameters and the effects of these parameters 

on the E1 and E2 are investigated using RSM. For 

selecting the range of parameters, range of time steps 

should be determined at first in order to manage 

camputational time, then by a few trial and error at 

upper and lower bound of N, range of β andγ could be 

determined so that the stability and error would be 

rational. For this purpose, by selecting the range of 

parameters, the design of experiments was performed 

according to the central composite design (CCD) with 

20 experiments using Minitab software as summaraized 

in Table 2. 

 

 

 

4. RESULTS AND DISCUSSION 
 

The example considered for verifying codes is a finite 

plate with a stationary crack subject to a dynamic 

loading as shown in Figure 4. This example is a pure 

mode I problem ( 0dyn

IIK  ). Analytical solution of this 

problem is presented by Freund as stated in Equation 

(28) [21]: 

0

0  

( ) 2 (1 2 )( )
 

1

c

I d c
c

if t t

K t C t t
if t t

 

 




   




 
(28) 

where 
c dt h C  is the time when stress wave reaches the 

crack tip for the first time. This analytical solution is 

valid until the reflected stress wave reaches the crack tip 
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( 3 3c dt t h C  ) since the assumption of the analytical 

solution is infinite plate. 
 

 

TABLE 2. The design of experiments according to RSM 

Run Beta Gamma N 

1 0.8549 0.5452 181 

2 0.6295 0.5102 300 

3 0.4041 0.4752 181 

4 0.4041 0.4752 419 

5 0.6295 0.5102 300 

6 0.6295 0.5700 300 

7 0.6295 0.5102 300 

8 1.0000 0.5102 300 

9 0.8549 0.4752 181 

10 0.6295 0.4500 300 

11 0.6295 0.5102 300 

12 0.4041 0.5452 419 

13 0.6295 0.5102 500 

14 0.4041 0.5452 181 

15 0.6295 0.5102 100 

16 0.6295 0.5102 300 

17 0.8549 0.5452 419 

18 0.6295 0.5102 300 

19 0.2500 0.5102 300 

20 0.8549 0.4752 419 

 

 

The dimensions are: L=10(m), a=5(m), h=2(m) and the 

material properties are the follows: Young’s modulus 

211( )E GPa , poisson’s ratio 0.3   and density 

37800 ( )kg m  . The tensile stress applied on the top 

surface is 1( )MPa  . A 40×100 regular quadrilateral 

meshes was used. The time integration scheme used was 

implicit mean acceleration scheme with 250 time steps. 

The dynamic stress intensity factors obtained from code 

has a good agreement with analytical solution as shown 

in Figure 5. Percentage error is also given in Figure 6. 

The stress intensity factors are normalized by 
0 h  and 

time is normalized by ct . According to Figure 6, the 

most errors are at the vicinity of 1Normalizedt   when stress 

wave reaches the crack tip for the first time, and the 

vicinity of 3Normalizedt   when the reflected stress wave 

reaches the crack tip [8]. 

The results of twenty different experiments were 

obtained as presented in Table 3 using verified codes. 

The result of normality test using SPSS software 

according to Kolmogorov-Smirnov method showed that 

P-values were equal to 0.067 and 0.293 (larger than 

statistical error i.e. 0.05) for E1 and E2, respectively. 

Therefore, the obtained results were followed normal 

distribution [22]. 

 
Figure 4. Geometry and loading for the dynamic problem 

 

 

 
Figure 5. Comparison between normalized DSIF obtained 

from code and normalized analytical solution 
 

 

 
Figure 6. Percentage error of 

IK using 250 time steps, 

0.25   and 0.5  , are 1 5%E   and 2 6.5%E   

 

 

The regression models for E1 and E2 were obtained 

using Minitab software; as expressed in Equations (29) 

and (30) respectively.  

2 2 2

1 1.6 11.4 27.1 0.0272

       2.59 27.0 0.000035

       9.1 0.00844 0.0078

E N

N

N N

 

 

  

   

  

  

 
(29) 

2 2 2

2 74.4 25.2 264 0.0421

       3.51 243 0.000024

       45.2 0.01322 0.0544

E N

N

N N

 

 

  

   

  

  

 
(30) 

The results of ANOVA are summarized in Table 4 for 

E1 and E2. 
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TABLE 3. The results of experiments 

Run Error 1 (%) Error 2 (%) 

1 7.2685 3.1827 

2 6.1386 5.0746 

3 6.5216 4.5710 

4 5.7148 6.3785 

5 6.1386 5.0746 

6 5.9644 5.3861 

7 6.1386 5.0746 

8 6.0876 4.5335 

9 7.8360 1.4744 

10 6.4355 7.4068 

11 6.1386 5.0746 

12 5.5628 5.7556 

13 5.4536 5.8417 

14 6.4558 4.6427 

15 9.9051 3.3061 

16 6.1386 5.0746 

17 5.6856 5.5022 

18 6.1386 5.0746 

19 5.7559 5.5672 

20 5.9072 4.9119 

 

 
TABLE 4. The results of ANOVA 

Source 
Degree of 

freedom 

P-value 

E1 E2 

Model 9 0.001 0.011 

Linear 3 0.000 0.002 

Square 3 0.008 0.137 

Interaction 3 0.514 0.275 

 

 

The P values less than 0.05, indicates that the desired 

parameters are effective [23]. It was observed that the 

linear and square terms were effective in the regression 

model of E1 while the square term was not effective in 

model of E2. Also the results indicated that obtained 

regression models have high efficiency for estimating 

error. 

The main effect of parameters on E1 was obtained as 

illustrated in Figure 7. The results revealed that the E1 

changed significantly with the change in the value of N. 

By increasing N, the E1 decreases markedly and the 

optimum value is in the range of 380-410 of N for 

minimum error. Also, the results illustrated that by 

increasing gamma, the E1 slightly decreases. As a 

matter of fact, 0.57 is the best value for gamma for 

minimization of E1 in the considered range. Another 

result that could be obtained from Figure 7 is this fact 

that the optimum level for beta is 0.25 at which the 

minimum value of E1 was achieved. 

Also, the main effect of parameters on E2 was 

achived as Figure 8. The results indicated that in 

contrary to E1, the E2 decreases as beta increases. The 

optimum value for gamma is 0.52 for minimization of 

E2. Also, the results demonstrated that 100 is the best 

value for N at which E2 is minimumin. 

The interaction effect of beta and gamma on E1 is 

shown in Figure 9.  

 

 

 
Figure 7. The main effect of parameters on E1 

 

 

 
Figure 8. The main effect of parameters on E2 

 

 

 
Figure 9. Interaction effect of beta*gamma on E1 when 

N=100 
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The results demonstrate that in lowest values of beta, 

the E1 is in optimum state and is smaller than 8% for all 

values of gamma. Figure 10 shows the interaction effect 

of beta and gamma on E2. Figure 10 reveals that in the 

highest values of beta (beta>0.8), the E2 is minimum 

almost for all values of gamma. Also, the results 

indicated that in a constant value of gamma, the E2 

decreases as beta increases. 

 

 

 
Figure 10. Interaction effect of beta*gamma on E2 when 

N=100 





5. CONCLUDING REMARKS 
 

In this study, the XFEM was implemented to model a 

dynamic problem with a stationary crack. Obtained 

dynamic stress intensity factors was verified with 

analytical solution. Also, the effects of parametes β, γ 

and ∆t of the Newmark time integration method on the 

errors at two critical times was demonstrated. These 

errors are called E1 andE2 in this paper. The  regression 

models were introduced for errors E1 and E2, which 

according to analysis of variance (ANOVA) results 

have high validity. The results showed that E1 has an 

inverse relation with γ and N and direct relation with β, 

while E2 has an inverse relation with β and the direct 

relation with N. Until 0.52   the relation between γ 

and E2 is inverse and for greater values of γ, this 

relation is direct. 
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هچكيد
 

 

 

گیری زمانی عددی در مسائل دینامیکی است. نتایج روش نیومارک تابعی از روش نیومارک روش مؤثری برای انتگرال

و در نرم افزار XFEMدر قالب Iی ترک دینامیکی ایستای مود (. در این تحقیق یک مسئلهt∆و  β ،γپارامترهای آن هستند )

Matlabوش اند. تحقیق حاضر روی اثرات پارامترهای رکدنویسی شده است و نتایج با حل تحلیلی صحت سنجی شده

همچنین با استفاده از روش سطح پاسخ تمرکز دارد.  (DXFEM)ی دینامیکیالمان محدود توسعه یافتهنیومارک در مسائل 

(RSM) مدل رگرسیونی برای تخمین خطای ضرای( ب شدت تنش دینامیکیDSIF با دقت بالایی مطابق نتایج روش )

سازد که تأثیر پارامترهای نیومارک را روی ( ارائه شده است. تحقیق ارائه شده محقق را قادر میANOVAآنالیز واریانس )

ین رویه به منظور های زمانی معین بیابد. ابهینه را برای تعداد گام γو  βخطای ضرایب شدت تنش دینامیکی دریابد و 

ی دلخواه بسیار مؤثر است. تاثیر پارامترهای در نظر گرفته شده روی ی محاسبات و افزایش دقت در ناحیهمدیریت هزینه

 .بررسی شد و حالت بهینه برای کمینه کردن خطا نشان داده شد Minitabدر نرم افزار  RSMخطا، با استفاده از روش 

doi: 10.5829/ije.2018.31.01a.08 

 

 
 
 
 


