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A B S T R A C T  
 

 

In this research we have implemented the Random Vortex Method to calculate velocity fields of fluids 

inside open cavities in both turbulent and laminar flows. the Random Vortex Method is a CFD method 

(in both turbulent and laminar fields) which needs the Schwarz-Christoffel transformation formula to 
map the physical geometry into the upper half plane. In some complex geometries like the flow inside 

cavity, the Schwarz-Christoffel mapping which transfers the cavity into the upper half plane cannot be 

achieved easily. In this paper, the mentioned mapping function for a square cavity is obtained 
numerically. Then, the instantaneous and the average velocity fields are calculated inside the cavity 

using the RVM. Reynolds numbers for laminar and turbulent flows are 50 and 50000, respectively. In 

both cases, the velocity distribution of the model is compared with the FLUENT results that the results 

are very satisfactory. Also, for aspect ratio the cavity (α) equal 2, the same calculation was done for 

Re=50 and 50000. The advantage of this modelling is that for calculation of velocity at any point of the 

geometry, there is no need to use meshing in all of the flow field and the velocity in a special point can 
be obtained directly and with no need to the other points. 

doi: 10.5829/ije.2018.31.01a.06 
 

 

NOMENCLATURE 
A Area z physical plane Vectors 
F Schwarz-Christoffel transformation function Greek Symbols u Velocity vector 

G Green’s function   Transformation plane n Unit vector normal to the wall 

h Vortex sheets η Gaussian random variable s Unit vector tangential to the wall 

k Time interval   Circulation per unit length   

p Pressure σ Standard deviation   

Re Reynolds number   Dirac delta function   

r radius   Dilatation   

RVM Random Vortex Method   Gradient operator   

t Time   Vorticity   

V Volume   Circulation   

W(u,v) Complex Velocity   Stream function   

 
1. INTRODUCTION1 
 

Facing the turbulent flows is inevitable in daily life and 

there is a certain need to study this kind of flows in detail 

to understand its characteristics [1]. Chorin represented a 

meshless method to solve the turbulent flows by using the 
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mathematical equations of the fluid mechanics named the 

Random Vortex Method (RVM) [2, 3]. This grid-free 

method is suitable for the analysis of flow at high 

Reynolds numbers because it has no obvious intrinsic 

source of diffusion [4]. At two dimensions, Vortex 

methods generally assign on discretizing vorticity field 

into a tremendous of vortex blobs [2], which position and 

intensity establish the underlying velocity field [5]. The 

proof of convergence was subsequently provided by Beale 
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[6] and further improvements in the analysis were given 

by Cottet [7]. Vortex method was later incorporated into a 

hybrid vortex-boundary element algorithm for the 

simulation of viscous flow inside 3-D geometries with 

moving boundaries of the type found in engines [8]. 

Methods which rely on vortex methods have achieved 

extensive popularity recently and have been utilized in a 

vast range of settings [3, 9-12]. Some early applications 

have focused on anticipating gross qualitative types of 

turbulent flow [13-15] and on comparing their results with 

experiments [16, 17]. Furthermore, numerical precision of 

the RVM has been studied by [5] for complex flows in 

laminar and high Reynolds number turbulent flows. 

Various researches have been performed in the field. H. 

Shokouhmand et al. [18] used a numerical method to 

investigate the flow and heat transfer characteristics in a 

square driven cavity for Reynolds numbers from 1 to 

10000. M. Taghilou et al. [19] used the single relaxation 

time (SRT) lattice Boltzmann equation to simulate lid 

driven cavity flow at different Reynolds numbers (100-

5000). Their investigation showed that with increasing the 

Reynolds number, bottom corner vortices will grow but 

they won’t merge together. In addition, the merger of the 

bottom corner vortices into a primary vortex and creation 

of other secondary vortices was shown in the cases which 

the aspect ratios are bigger than one. B. Zafarmand and 

coworkers [20] studied turbulent flow in a channel using 

Vortex Blob Method (VBM) and obtained physical concepts 

of turbulence. In their work, time-averaged velocities, and 

then their fluctuations are calculated. M. Taghilou et al. [19] 

used the SRT lattice Boltzmann equation to simulate lid 

driven cavity flow at different Reynolds numbers (100-5000) 

and three aspect ratios, K=1, 1.5 and 4.  

The main reason that meshless methods are 
significantly interested is that the well-established and 
successful numerical methods like the finite volume/finite 
elements need a mesh. The automatic generation of a high 
quality mesh poses a serious problem in the analysis of 
practical engineering systems. Furthermore, the analysis 
and simulation of certain types of problems (like dynamic 
crack propagation) require an expensive remeshing 
operation. Meshless methods overcome these problems 
associated with meshing by eliminating the mesh 
altogether [21]. 

In this research we obtain the angels of Schwarz-

Christoffel transformation mapping with numerical 

method, then use the mapping in the Random Vortex 

Method to calculate turbulent and laminar flow field 

inside square and rectangular open cavities by the 

Random Vortex Method. 
 
 

2. NUMERICAL SCHEME  
 

2. 1 Formulation         Navier-Stokes and continuity 

equations, due to the vorticity-most important aspect of 

turbulence- and vortex stretching effects in the two 

dimensional formulation, will be simplified to 

1 2
/ ReDu Dt p


  u  (1) 

Here, Re plays the role of Reynolds number at inlet of the 

system and u=(u,v) signifies the velocity which is 

normalized, p is the normalized pressure and  shows 

the gradient operator, 
2  expresses the Laplacian, and 

.
Du

u
Dt t


  


 implies the substantial derivative.  

By solving these equations considering the boundary 

conditions, the flow field is specified 

at inlet u = (1,0) (2) 

On the walls u = 0 (3) 

As we know, the second element of the flow field is 

vorticity   

  u  (4) 

Then: 

1 2

/ ReD Dt


  
 

(5) 

u(r) will be achieved by (1) and (4), when (5) is utilized 

for updating ω(x, y) - the field of velocity.  

Based on the Helmholtz’s Theorem [2, 16] the 

mechanism of momentum transport, is revealed by a 

synthetic method of approach, velocity decomposition 

theorem (known also as the Hodge decomposition), that 

plays a vital role in contemporary computational fluid 

mechanics. According to Helmholtz’s Theorem, the 

velocity vector is discretized into a divergence-free, 

irrotational, rotational and curl-free components i.e.  

 u u u
 

          (6) 

where ∇.uω ≡ 0       (7) 

while ∇×u∆ ≡ 0       (8) 

Both the components of mentioned velocity need to 

satisfy the boundary conditions of zero normal velocity, 

uω . n = 0 and u∆ . n = 0            (9) 

while, n is the unit vector normal to the walls and u -the 

total velocity- has to satisfy the no-slip boundary condition 

u . s = 0        (10) 

where, s signifies the unit vector which is tangential to the 

walls [2].  

 

2. 1. 1. Vortex Dynamics        What is named vortex 

blob signifies ωj -a discrete elementary vorticity- which its 

acting domain is ΔVj -an elementary volume- located at rj. 

Its intensity is calculated with the Dirac delta function, i.e. 
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[2, 4, 22] 

( )
j j j

r r     (11) 

where, 







jV

j
jV

j
dV

0
lim

 (12) 

is its local circulation. 

By Dirac delta and approaching ΔAj to zero and using 

Green function, we will have: 

( )
j j

j

x G 

 
(13) 

For which, 


jA

jj
dA

 
(14) 

Finally, by definition of Equation (1), in terms of complex 

variables we will have  

1

( , )

2 max( , )

j j

j

j O j

i z z

w z z

z z r z z




  



 
 (15) 

while w implies the velocity at physical plane and z = x + 

iy and ro is the cut-off radius, where velocity is constant. 

Velocity fields satisfying boundary conditions, uω. n = 0 

and u∆ . n = 0, can be achieved using any Poisson solver. 

For the Random Vortex Method we use the classical 

method of conformal mapping, which transforms the 

velocity field into the upper-half plane (ζ-plane). 

Then: 

*

( , ) ( , ) ( , )
j j j

w w w
  

      

 

  (16) 

Using Equation (4), w(ζ, ζj) will be achieved. Asterisk is 

complex conjugate. Consequently, the velocity field 

affected by vortex blobs will be: 

1

( ) ( ) ( , )

b
J

p j

j

w w w
 
   



   (17) 

By using the Schwarz-Christoffel conformal mapping, the 

transformation function will be: 

( ) /F d dz 
 (18) 

while  

( ) ( ) ( )w z w F 
 (19) 

is the velocity vector in forms of complex variable.  

Displacing of vortex elements with diffusion 

mechanism will occur by two (perpendicular directions) 

independent-Gaussian random with mean of zero and 

standard deviation of σ = (2k/Re)
1/ 2

.  

Displacement by combination of the two mentioned 

mechanisms will occur: 

*

( ) ( ) ( )
j j j j

z t k z t w z k    
 

  (20) 

while, ηj = ηx,+i ηy, and w = wω+ w∆ or, in upper-half 

plane: 

* *

j
( ) ( ) ( ) ( ) ( ) ( ) ( )

j j j j j j
t k t w F F k F         

 
(21)  

Using (21) is simpler than (20) and more direct and the 

velocity field in transform-plane will be calculated by 

(17). 

w needs to be obtained at points along the wall to 

satisfy the no-slip boundary condition. Distance between 

these points is considered as h along walls of geometry. 

As we know, the tangential velocity at walls is not zero, 

thus, a vortex is created with a circulation of h.uw to 

satisfy this condition. Due to loss of vortexes near walls 

because of diffusion, accuracy is poor near solid walls. 

Furthermore, inside blob cores, velocity is assumed to be 

constant, and gradient of velocity near solid surfaces are 

too high. To overcome this problem, introduction of 

vortex sheets near walls is necessary [2, 4, 22].  
 

2. 1. 2. Vortex Sheets       To satisfy no-slip boundary 

condition, w needs to be obtained at points along the wall. 

For achieving this purpose Chorin [3] introduced a thin 

numerical shear layer where the effects of vortex sheets 

overcome the blobs. In this section, the two 

undermentioned conditions is stablished: 
I     ∂v / ∂x << ∂u / ∂y 

II  Diffusion is negligible in comparison to convection in 

the x-direction  

For mentioned sheets, (1) is reduced to 

/u y


              (22)  

Then, uω (r) -the velocity vector- inside the sheer layer, 

needs to be calculated: 

( ) ( , )
i i

S

iy
dyu x u x y





  
 

   (23) 

where, δs is outside boundary of the shear layer and yi the 

calculation point. Considering uδ = u at y = δ, the integral 

of (23) is converted to a summation. Then         

0

lim
i

i

y y

j y
y

dy 


 

 
 

   (24) 

where, (24) is the circulation of each unit of a vortex 

sheet. Then, the circulation of each vortex sheet by length 

of h:  



41                     I. Tadayoni Navaei and B. Zafarmand / IJE TRANSACTIONS A: Basics  Vol. 31, No. 1, (January 2018)    38-44 
 

Γj = h×γj      (25) 

Then, the velocity difference across length of any unit is 

j ju          (26) 

As a consequence of (23), the effectiveness zone of a 

vortex sheet is limited to a 'shadow' below it. 

Thus:  

( , ) ( )
j j

j

i i i
u x y u x d


  

 
  (27) 

while, 

1 /
j i j

d x x h  
 

  (28) 

According to Helmholtz theorem, the normal velocity: 

/v I x        (29) 

while, 

0 0
( ) ( )

i i
y y

i i i i j j j

j

I udy u x y ydu u x y d y       (30) 

(29) is converted to (31) by finite-difference 

 ( ) /
i i

v x y I I h
 

   
 

 (31) 

while, according to (30), 

1

2

0
( )

i i j j j

j

I u x h y y d



 
   

 

(32) 

And 

 

1

2

0

1 ( ) /

min ,

j i j

i j

d x h x h

and y y y


   


 

  (33) 

Diffusion mechanism of a sheet is ηi = 0+iηy, considering 

condition II. The item −½γj is used to match vortex sheets 

motion with vortex blobs and effect of their image [2, 4, 

22].  

 
2. 2. Algorithm          By adopting time step (k), 

according to courant condition which says that k ≤ h/max 

u [4] and h -the strength of the sheet which specifies their 

spatial resolution, calculations are started. σ -the standard 

deviation- is identified for a given Reynolds number. 

Then, sheets number needs to be chosen considering γ 

value. These mentioned items are equivalent to items 

which are made in corresponding step and a grid size in a 

finite difference algorithm. 
The initial conditions is the potential flow which is 

obtained by solution of ∇2
ψ = −ω. 

To stay with condition of no boundary, the core radius (ro) 

is fixed. By setting ro> δs error of this requirement will 

tend to zero. The potential velocity, created by a vortex 

blob is obtained at the wall, according to (25)  

/
o j o

u r      (34) 

while, considering (26) with 0ju u  , 

/
o

r h        (35) 

This equation provides relation between the core radius 

and the vortex sheet length. 

Using equations (20), (27) and (31), vortex sheets 

move in sheer layer. After calculation of sheets 

displacement, new location of sheets needs to be 

considered. A sheet which jumps out of the sheer layer, 

has two possible location. If it jumps into the geometry, it 

converts to a vortex blob. If it jumps out of the geometry, 

but inside the sheer layer image, it will be a sheet with 

previous location inside the sheer layer, otherwise it will 

be removed. For minimizing losing of a blob, the 

condition of δs < ro has to be considered. 
 

 

3. IMPLEMENTATION  
 

As mentioned above, we need the Schwarz-Christoffel 

formula for our geometry. Our geometry is an open cavity,  

then 
2 2 2 2

( ) ( ) / ( )F a b      .  

a & b are the corners at the z plane which are transformed 

to the ζ plane. For the open cavity F(ζ) is not solvable, 

hence a and b are obtained as follow: 

We find a and b by using the Runge-Kutta 4th code. As 

we see in Figure 1, (0,0) at the physical plane is 

transformed to (0,0) at the ζ plane. We use this node to 

find a and b. At first we assume that B (0.5,1) is 

transformed to b (1,0). A=(0.5,0) and ( ) /F d dz   then 

2 2 2 2

( 1/ ) / ( )ad dz     , therefore we need to find 

the angle “a” to have F(ζ). As shown in Figure 2, we 

change assumed a, until the residual becomes constant. 

Residuals = abs[(assumed a-obtained a) / a]. 

Then, having the new a, we go to find b, and so on. 

Finally, a and b are obtained. 
 
 

 
Figure 1. (Left): Schwarz-Christoffel ζ plane; (right): Schwarz-

Christoffel z(physical) plane 
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Figure 2. Convergence of calculation of a and b for α=1 

 

 

4. CONVERGENCE 

 

As mentioned before, to obtain one angle, another angle is 

guessed and by using the Runge-Kutta 4
th
 code another 

angle is obtained. Then, the residual is calculated. After 

the first guessed angle is changed by adding slightly and 

again, second new angle is obtained. 

As it can be observed from Figure 2, calculations 

continue until the residual reaches just around zero. In all 

graphs of the Figure 2, convergence is obvious.  

 

 

5. RESULTS AND DISCUSSION 
 

First, the code was written for a square cavity with the 

Reynolds number of 50. To compare our results, the 

FLUENT was used and the conformity was satisfactory. 

In the foregoing flow, the dimensionless velocity, u, 

plotted at the center line of the cavity and compared with 

the result of the FLUENT (Figure 3), which the agreement 

was perfect. The code was changed for the Reynolds 

number of 50000.  

All of the parameters used in our code are listed in 

Table 1.  

Formation of the primary eddy at the cavity center was 

observed (Figure 4). The primary eddy’s center was 

formed perfectly at the cavity’s center. In addition to 

formation of the two secondary eddies at the bottom of the 

cavity, there was another small eddy at the top left.  

 
Figure 3. Average u velocity at centerline of cavity, (*) 

FLUENT, (-) code, at (Re=50 & α=1) 

 

 

 
Figure 4. (Left): Stream lines of code, at Re= 50000 & α=1; 

(Right): average u velocity at centerline of cavity, (o) 

FLUENT, (-) code, at Re=50000 
 

 
TABLE 1. Numerical parameters used in code 

Reynolds number 50 50000 

Δt (k) 0.05 0.05 

h 0.2 0.05 

Δx=Δy 0.02 0.02 

Ys 1.4σ 2σ 

Iterations 70 500 

It.s for average vel. 20 300 

Total iterations 90 800 

 

Also, at this Reynolds number, the average velocity, u, 

was plotted at the center line of the cavity and compared 

with the FLUENT (Figure 4-right). In this condition, the 

coincidence was very good. The Κ-ω method was used for 

the turbulent flow and the convergence of the FLUENT 

results reached after 8000 iteration with residuals of k=0.5 

×10-4, ω=1 ×10-4, continuity=0.5 ×10-5 and xvel. & yvel. 

= 1 ×10-6. 

We need to point out that the velocity measures and 

streamlines, which are plotted in Figure 4, are average; 

therefore, to see the instantaneous status, instantaneous u 

velocity at centerline of cavity has been plotted in Figure 

5. As seen in the figure, the velocity has fluctuations 

which are one of turbulent flows specification.  
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In this figure, the instantaneous streamlines contours 

are shown as well. As noted, the contours do not have any 

regular shape which is another specification of turbulent 

flows. Incidentally, all primary and three secondary eddies 

are formed at the moment but have an irregular shape. As 

we know, having velocity fluctuations, Reynolds stresses 

can be obtained. 

Also, for the cavity aspect ratio (α) equal 2, the same 

calculation was done for Re=50 and 50000. Figures 6 and 

7 demonstrate both the streamlines and comparison of the 

velocities center line obtained by the model and by the 

FLUENT. An acceptable agreement is observed. 

 

 

 
Figure 5. (Left): Instantaneous stream lines of code; (Right): 

instantaneous u velocity of code at center line of cavity (Re= 

50000 & α=1) 

 

 

 
Figure 6. (Left): Stream lines of code, at Re= 50 & α=2; (Right): 

average u velocity at centerline of cavity, (o) FLUENT, (-) code, 

at Re=50000 

 

 

 
Figure 7. (Left): Stream lines of code, at Re= 50000 & α=2; 

(Right): average u velocity at centerline of cavity, (o) FLUENT, 

(-) code, at Re=50000 
 

6. CONCLUSION 
 

A method to determine angles of the Schwarz-Christoffel 

mapping formula which is used in the Random Vortex 

Method is studied. Then, a code is written by RVM for an 

open square cavity and formation eddies is investigated in 

laminar and turbulent flows. Furthermore, dimensionless 

velocity at centerline of cavity is compared by FLUENT 

results. By using appropriate parameters, RVM is a very 

successful method in studying two-dimensional, viscous, 

incompressible and time dependent flows. Having 

instantaneous velocities, velocity fluctuations are 

achievable; consequently, Reynolds stresses can be 

calculated. Flow field -obtained by the Random Vortex 

Method- can be utilized in studying heat transfer and 

many other applications. 
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هچكيد
 

 

 

آرام و  یانجر یبرا باز یهادر داخل حفره یانسرعت جر یدانمحاسبه م یبرا یتصادف یهااز روش گردابه یقتحق یندر ا

آرام و درهم( که جهت  یداناست )در هر دو م یروش محاسبات یک یتصادف یهادرهم استفاده شده است. روش گردابه

 یچیدهپ یهااز هندسه یکند. در برخیاستفاده م Schwarz-Christoffelاز نگاشت  لایی،صفحه بایمانتقال هندسه به ن

مقاله  ین. در ایدآیدست نمه ب یآسانکند بهیمنتقل م ییصفحه بالایمکه هندسه را به ن یداخل حفره، نگاشت یانمانند جر

 ،. سپسیدآیدست مه ب یصورت عدده ب(  2و مستطیلی )با نسبت طول به عرض  یحفره مربع یتابع انتقال مذکور برا

 یبرا ینولدزد. اعداد رنشویمحاسبه م یتصادف یهاو متوسط داخل حفره توسط روش گردابه یاسرعت لحظه یهایدانم

شود یم یسهفلوئنت مقا یجسرعت مدل با نتا یعتوز ،است. در هر دو مورد 50000و  50 یبترته آرام و درهم ب یهایانجر

محاسبه سرعت در هر نقطه از هندسه،  یکه برا ینستا یروش مدل ساز ینا یتبخش هستند. مز یترضا یاربسکه 

به نقاط  یو بدون وابستگ یمتواند مستقینقطه خاص م یکنبوده و سرعت در  میدان جریاندر کل  یبه مش بند یاجیاحت

 .یددست آه ب یگرد
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