Electrical and Mechanical Performance of Hybrid and Non-hybrid Composites

Document Type: Original Article


1 Department of Production Engineering and Mechanical Design, Faculty of Engineering, Menoufia University, Shebin El-Kom, Egypt

2 Basic Science Department, Faculty of Engineering, Menoufia University, Shebin El-Kom, Egypt


This paper investigated the moisture absorption, mechanical behavior and the dielectric performance of hybrid and non-hybrid polymeric composites. Hand lay-up technique was used for processing carbon; glass reinforced polyester resin composites (non-hybrid) and carbon-glass/polyester hybrid composites with various fiber configurations. The maximum resistance of water absorption was obtained for the hybrid composites with combinations [2C-2G], where the water absorption ratio reached to 1%. In addition, the maximum tensile, flexural strengths and ILSS of this combination were 123 MPa, 1397 MPa, and 22.35 MPa, respectively. This is due to the higher tensile strength of polyester matrix and good adhesion between the glass and carbon fabrics with the polyester matrix. The dielectric constant of non-hybrid composite with codes [C] is higher than non-hybrid composite with codes [G] and dielectric constant for all hybrid composites lies between non-hybrid composites.