Energy and Exergy Analysis of a New Power, Heating, Oxygen and Hydrogen Cogeneration Cycle Based on the Sabalan Geothermal Wells


Department of Engineering, Urmia University, Urmia, Iran


In this paper, a new power, heating and hydrogen cogeneration cycle from Sabalan geothermal two wells is proposed and analyzed. In the proposed system, a new double flash cycle and organic Rankine cycle are used for power production. A proton exchange membrane (PEM) is also used for hydrogen production and the domestic water heater is used for heating. The impacts of some design parameters, such as separators pressures, evaporator temperature, pinch point temperature difference and PEM temperature on the integrated system performance are investigated and then optimization is done from exergy point of view for three considered scenarios. According to the optimization results, the value of heating, net output power, hydrogen production and thermal and exergy efficiencies of the cogeneration system are obtained as 15751 kW, 18436 kW, 11.13 kg/h, 29.48% and 65.23%, respectively.


1.     Mosaffa, A. H. and Zareei, A., “Proposal and thermoeconomic analysis of geothermal flash binary power plants utilizing different types of organic flash cycle”, Geothermics, Vol. 72, (2018), 47–63.

2.     Jradi, M. and Riffat, S., “Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies”, Renewable and Sustainable Energy Reviews, Vol. 32, (2014), 396–415.

3.     Zare, V., “A comparative thermodynamic analysis of two tri-generation systems utilizing low-grade geothermal energy”, Energy Conversion and Management, Vol. 118, (2016), 264–274.

4.     Pham, A. T., Baba, T., Sugiyama, T., Shudo, T., “Efficient hydrogen production from aqueous methanol in a PEM electrolyzer with porous metal flow field: Influence of PTFE treatment of the anode gas diffusion layer”, International Journal of Hydrogen Energy, Vol. 38, No. 1, (2013), 73–81.

5.     Ni, M., Leung, M. K. H., and Leung, D. Y. C., “Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant”, Energy Conversion and Management, Vol. 49, No. 10, (2008), 2748–2756.

6.     Ghaebi, H., Farhang, B., Parikhani, T., Rostamzadeh, H., “Energy, exergy and exergoeconomic analysis of a cogeneration system for power and  hydrogen  production  purpose  based   on TRR method and using low grade geothermal source”, Geothermics, Vol. 71, (2018), 132–145.

7.     Yuksel, Y. E., Ozturk, M., and Dincer, I., “Thermodynamic analysis and assessment of a novel integrated geothermal energy-based system for hydrogen production and storage”, International Journal of Hydrogen Energy, Vol. 43, No. 9, (2018), 4233–4243.

8.     Ratlamwala, T. A. H., Dincer, I., and Gadalla, M. A., “Performance analysis of a novel integrated geothermal-based system for multi-generation applications”, Applied Thermal Engineering, Vol. 40, (2012), 71–79.

9.     Noorollahi, Y., Yousefi, H., Itoi, R., Ehara, S., “Geothermal energy resources and development in Iran”, Renewable and Sustainable Energy Reviews, Vol. 13, No. 5, (2009), 1127–1132.

10.   Noorollahi, Y., Shabbir, M. S., Siddiqi, A. F., Ilyashenko, L. K., Ahmadi, E., “Review of two decade geothermal energy development in Iran, benefits, challenges, and future policy”, Geothermics, Vol. 77, (2019), 257–266.

11.   Mohammadzadeh Bina, S., Jalilinasrabady, S., and Fujii, H., “Thermo-economic evaluation of various bottoming ORCs for geothermal power plant, determination of optimum cycle for Sabalan power plant exhaust”, Geothermics, Vol. 70, (2017), 181–191.

12.   Mohammadzadeh Bina, S., Jalilinasrabady, S., and Fujii, H., “Exergoeconomic analysis and optimization of single and double flash cycles for Sabalan geothermal power plant”, Geothermics, Vol. 72, (2018), 74–82.

13.   Aali, A., Pourmahmoud, N., and Zare, V., “Exergoeconomic analysis and multi-objective optimization of a novel combined flash-binary cycle for Sabalan geothermal power plant in Iran”, Energy Conversion and Management, Vol. 143, (2017), 377–390.

15.   abdolalipouradl,  mehran, Khalilarya, S., and jafarmadar,  samad, “Exergy analysis of a new proposal combined cycle from Sabalan geothermal source”, Modares Mechanical Engineering, Vol. 18, No. 4, (2018), 11–22.

14.   Abdolalipouradl, M., Khalilarya, S., and Jafarmadar, S., “The thermodynamic analysis of a novel integrated transcritical CO2 with Kalina 11 cycles from Sabalan geothermal wells”, Modares Mechanical Engineering, Vol. 19, No. 2, (2019), 335–346.

16.   Bejan, A., Tsatsaronis, G., Moran, M., Thermal design and optimization, John Wiley & Sons, (1996).