Flow Seals Parameters Analysis For Rotors


1 Laboratoire de recherche des technologies industrielles, Université Ibn Khaldoun de Tiaret, Département de Génie Mécanique, Route de Zaroura, Tiaret, Algérie

2 Université d’Oran 2 Mohamed ben Ahmed, Oran, Algérie


The interaction of work fluid mechanics with that of the rotary system itself, basically composed of axes, bearings and rotors, is performed by inserting equivalent dynamic coefficients in the mathematical model of the rotor, the latter being obtained by the finite element method. In this paper, the dynamic coefficients of inertia, stiffness and damping of the flat seals analyzed here are evaluated, from the point of view of the dependence of the geometric characteristics of the seals and the operating conditions of the machine. Then, once incorporated into the entire rotating system model, the flow seals are also analyzed from the point of view of their influence on the overall dynamic response of the rotating machine. The mechanical seals of the cylindrical, conical and stepped type were analyzed, determining, for this purpose, the dynamic coefficients of damping, stiffness and inertia. In addition, the influence of physical and operational parameters of the system in relation to these elements were verified. Therefore, the modeling and analysis of flow seals are inserted in an interesting and promising way in the context of the global research theme in rotary machines.