Divya, K.C., Ostergaard, J., “Battery energy storage technology for power systems—an overview”, Electric Power Systems Research, Vol. 79, (2009), 511–520.
Dhassa, A. D., Natarajana, E., Lakshmi, P., “an investigation of temperature wffects on solar photovoltaic cells and modules”, International Journal of Engineering, Transaction C: Aspects Vol. 27, (2014), 1713-1722.
Alotto, P., Guarnieri, M., Moro, F., “Redox flow batteries for the storage of renewable energy: A review”, Renewable & Sustainable Energy Reviews, Vol. 29, (2014), 325–335.
Ponce de Leon, C., Frıas-Ferrer, A., Gonzalez-Garcıa, J., Szanto, D.A., Walsh, F.C., “Redox flow cells for energy conversion”, Journal of Power Sources, Vol. 160, (2006), 716–732.
Kear, G., Shah, A.A., Walsh, F.C., “Development of the all vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects”, International Journal of Energy Research, Vol. 36, (2011), 1105-1120.
Skyllas-Kazacos, M., Chakrabarti, M.H., Hajimolana, S. A., Mjalli, F.S., Saleem, M., “Progress in Flow Battery Research and Development”, Journal of The Electrochemical Society, Vol. 158, (2011), 55-79.
Weber, A.Z., Mench, M.M., Meyers, J.P., Ross, P.N., Gostick, J.T., Liu, Q., “Redox flow batteries: A review”, Journal of Applied Electrochemistry, Vol. 41, (2011), 1137–1164.
Xu, Q., Zhao, T.S., Leung, P.K., “Numerical investigations of flow field designs for vanadium redox flow batteries”, Applied Energy, Vol. 105, (2013), 47–56.
Kim, D. K., Yoon, S. J., Lee, J., Kim, S., “Parametric study and flow rate optimization of all-vanadium redox flow batteries”, Applied Energy, Vol. 228, (2018), 891-901.
Yin, C., Gao, Y., Guo, S., Tang, H., “A coupled three dimensional model of vanadium redox flow battery for flow field designs”, Energy, Vol. 74, (2014), 886–895.
Xu, Q., Zhao, T.S., “Fundamental models for flow batteries”, Progress in Energy and Combustion Science, Vol. 49, (2015), 40–58.
Shah, A.A., Watt-Smith, M.J., Walsh, F.C., “A dynamic performance model for redox-flow batteries involving soluble species”, Electrochimica Acta, Vol. 53, (2008), 8087–8100.
You, D., Zhang, H., Chen, J., “A simple model for the vanadium redox battery”, Electrochimica Acta, Vol. 54, (2009), 6827–6836.
Pugach, M., Kondratenko, M., Briola, S., Bischi, A., “Zero dimensional dynamic model of vanadium redox flow battery cell incorporating all modes of vanadium ions crossover”, Applied Energy, Vol. 226, (2018), 560-569.
López-Vizcaíno, R, Mena, E, Millán, M, Rodrigo, M, Lobato, J, “Performance of a vanadium redox flow battery for the storage of electricity produced in photovoltaic solar panels”, Renewable Energy, Vol. 114, (2017), 1123-1133.
Suresh, S., Ulaganathan, M., Venkatesan, N., Periasamy, P., Ragupathy, P., “High performance zinc-bromine redox flow batteries: Role of various carbon felts and cell configurations”, Journal of Energy Storage, Vol. 20, (2018), 134-139
Yan, Y., Skyllas-Kazacos, M., Bao, J, “Effects of battery design, environmental temperature and electrolyte flowrate on thermal behaviour of a vanadium redox flow battery in different applications”, Journal of Energy Storage, Vol. 11, (2017), 104-118.
Li, Y., Zhang, X., Bao, J., Skyllas-Kazacos, M., “Studies on optimal charging conditions for vanadium redox flow batteries”, Journal of Energy Storage, Vol. 11, (2017), 191-199.
Bhattacharjee, A, Saha, H, “Development of an efficient thermal management system for Vanadium Redox Flow Battery under different charge-discharge conditions”, Applied Energy, Vol. 230, (2018), 1182-1192
Nield, Donald A., and Adrian Bejan. Convection in porous media. Vol. 3. New York: springer, 2006.