Design and Evaluation of a Magnetorheological Damper Based Prosthetic Knee

Authors

1 Production Engineering Department, College of Engineering, Defence University, Bishoftu, Ethiopia

2 Mechanical Engineering Department, Indian Institute of Technology Madras, Chennai, India

Abstract

In this work, a magnetorheological (MR) damper based above-knee prosthesis is design and evaluated based on its performance in swing phase and in stance phase. Initially, a dynamic system model for swing phase of a prosthetic leg incorporating a single-axis knee with ideal MR damper was built. The dynamic properties of the damper are represented with Bingham parametric model. From Bingham model, governing damper parameters that determine the damping force and piston displacement of the damper are identified and optimized so as to enable the single-axis knee to nearly mimick the natural swing phase trajectory of a healthy person for level-ground walking as obtained from experimental data. Then, with the optimal damper parameters, an MR damper valve constrained in a desired cylindrical volume is developed. Finally, the prosthetic knee with the MR damper is evaluated for its performance during stance phase, based on ISO standard loading condition for the intended application. The results show that, compare to Rheo knee®, the MR damper based prosthetic knee has achieved up to 68% reduction by volume and 40% reduction by weight.

Keywords