Control of Formation of Intermetallic Compound in Dissimilar Joints Aluminum-steel

Authors

1 Department of Mechanical Engineering, Research Group – GEA, Universidad de Antioquia, Medellín, Colombia

2 Department of Mechatronics Engineering, Research Group - MATyER, Instituto Tecnológico Metropolitano, Medellín, Colombia

Abstract

The elimination of the FexAly type phases was considered the solution to low ductility presented in aluminum-steel welded joints. Recently, the researches do not seek the suppression but the control of the thickness of these compounds. In this work, Al-Fe joints were manufactured by solid state and fusion welding, looking for controlling the formation of intermetallic compounds. Temperature measurements were carried out during the welding. The joints interface was characterized using optical and scanning electronic microscopy, aided by chemical composition measures with X-EDS. The microstructural characterization at the interface of aluminum-steel joints, in solid state welded joints, demonstrated the absence of intermetallic compounds, which is attributed to the low temperature reached during the process - less than 300 ° C. In the case of fusion joints, it has observed the permanent formation of intermetallic compounds whose thickness varies significantly with the heat input.

Keywords


1.     Tomida, S., and K. Nakata. "Fe–Al composite layers on aluminum alloy formed by laser surface alloying with iron powder." Surface and Coatings Technology, Vol. 174 (2003): 559-563.
2.     Zarooni, M., and R. Eslami-Farsani. "Effect of welding heat input on the intermetallic compound layer and mechanical properties in arc welding-brazing dissimilar joining of aluminum alloy to galvanized steel." International Journal of Engineering-Transactions B: Applications, Vol. 29, No. 5 (2016): 669-678.
3.     Chen, C. M., and R. Kovacevic. "Joining of Al 6061 alloy to AISI 1018 steel by combined effects of fusion and solid state welding." International Journal of Machine Tools and Manufacture, Vol. 44, No. 11 (2004): 1205-1214.
4.     Rastkerdar, E., H. Aghajani, A. Kianvash, and C. C. Sorrell. "Parametric Optimization of Electro Spark Microwelding of Aluminum Clad Steel." International Journal of Engineering-Transactions A: Basics, 31, No. 7 (2018): 1146-1151.
5.     Jiang, W. H., and R. Kovacevic. "Feasibility study of friction stir welding of 6061-T6 aluminium alloy with AISI 1018 steel." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 218, No. 10 (2004): 1323-1331.
6.     Singh, R., Saadat Ali Rizvi, and S. P. Tewari. "Effect of friction stir welding on the tensile properties of AA6063 under different conditions."International Journal of Engineering Transactions A: Basics, Vol. 30, No. 4 (2017): 597-603.
7.     M. Fukumoto, T. Yasui, Y. Shimoda, M. Tsubaki, and T. Shinoda, “Butt welding between dissimilar metals by friction stirring,” in 5th International symposium on friction stir welding., 2004, 1–8.
8.     Chen, Thaiping. "Process parameters study on FSW joint of dissimilar metals for aluminum–steel." Journal of Materials Science, Vol. 44, No. 10 (2009): 2573-2580.
9.     Chen, T. P., and W-B. Lin. "Optimal FSW process parameters for interface and welded zone toughness of dissimilar aluminium–steel joint." Science and Technology of Welding and Joining 15, No. 4 (2010): 279-285.
10.   Soundararajan V. and R. Kovacevic, “Proceedings of 6th International Friction Stir Welding Symposium : Saint Saveur, Canada, 10-13 October 2006.,” in Proceedings of 6th International Friction Stir Welding Symposium, 2006, 1–11.
11.   Tanaka, Tsutomu, Taiki Morishige, and Tomotake Hirata. "Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys." Scripta Materialia, Vol. 61, No. 7 (2009): 756-759.
12.   Torres, Edwar Andrés, and Antonio Jose Ramirez. "União de juntas dissimilares alumínio-aço de chapas finas pelo processo de soldagem por atrito com pino não consumível (SAPNC)."Soldagem & Inspeção, Vol. 16, No. 3 (2011): 265-273.
13.   Torres E. and A. Ramirez, “Efeito dos parâmetros de processo na obtenção e na microestrutura de juntas alumínio-aço realizadas mediante Soldagem POR Atrito COM Pino nãO Consumível (SAPNC),” Soldagem & Inspeção , Vol. 18, No. 3, pp. 245–256, 2013.
14.   E. Torres and A. Ramirez, “Inhibición de la formación de compuestos intermetálicos en juntas aluminio-acero soldadas por fricción-agitación,” Revista de Metalurgia, Vol. 52, No. 1, 3–11, 2016.
15.   Pickin, Craig Graeme, Stewaret W. Williams, and M. Lunt. "Characterisation of the cold metal transfer (CMT) process and its application for low dilution cladding."Journal of Materials Processing Technology, Vol. 211, No. 3 (2011): 496-502.
16.   Zhang, H. T., J. C. Feng, Peng He, B. B. Zhang, J. M. Chen, and L. Wang. "The arc characteristics and metal transfer behaviour of cold metal transfer and its use in joining aluminium to zinc-coated steel." Materials Science and Engineering: A, Vol. 499, No. 1-2 (2009): 111-113.
17.   Cao, R., Gang Yu, J. H. Chen, and Pei-Chung Wang. "Cold metal transfer joining aluminum alloys-to-galvanized mild steel." Journal of Materials Processing Technology, Vol. 213, No. 10 (2013): 1753-1763.
18.   Lin J., N. Ma, Y. Lei, and H. Murakawa, “Shear strength of CMT brazed lap joints between aluminum and zinc-coated steel,” Journal of Materials Processing Technology, Vol. 213, No. 8, 1303–1310, 2013.
19.   Xue P., B. L. Xiao, D. R. Ni, and Z. Y. Ma, “Enhanced mechanical properties of friction stir welded dissimilar Al-Cu joint by intermetallic compounds,” Materials Science and Engineering: A , Vol. 527, No. 21–22, 5723–5727, 2010.
20.   Zhang, Guifeng, Wei Su, Jianxun Zhang, and Zhongxin Wei. "Friction stir brazing: a novel process for fabricating Al/steel layered composite and for dissimilar joining of Al to steel." Metallurgical and Materials Transactions A, Vol. 42, No. 9 (2011): 2850-2861.
21.   Qian, Wang, Xue-song LENG, Tian-hao YANG, and Jiu-chun YAN. "Effects of Fe—Al intermetallic compounds on interfacial bonding of clad materials." Transactions of Nonferrous Metals Society of China, Vol. 24, No. 1 (2014): 279-284.
22.   Rathod, M. J., and Mm Kutsuna. "Joining of aluminum alloy 5052 and low-carbon steel by laser roll welding." Welding Journal-New York-, Vol. 83, No. 1 (2004): 16-26.
23.   Etter A. L., T. Baudin, N. Fredj, and R. Penelle, “Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds,” Materials Science and Engineering: A , Vol. 445–446, (2007), 94–99.
24.   Stojakovic, Dejan. "Electron backscatter diffraction in materials characterization." Processing and Application of Ceramics, Vol. 6, No. 1 (2012): 1-13.
25.   Santos, T. F. A., E. A. Torres, J. C. Lippold, and A. J. Ramirez. "Detailed Microstructural Characterization and Restoration Mechanisms of Duplex and Superduplex Stainless Steel Friction-Stir-Welded Joints." Journal of Materials Engineering and Performance, Vol. 25, No. 12 (2016): 5173-5188.
26.   Ashfaq, M., and K. J. Rao. "Comparing bond formation mechanism between similar and dissimilar aluminium alloy friction welds." Materials Science and Technology, Vol. 30, No. 3 (2014): 329-338.
27.   Li, Wenya, Achilles Vairis, Michael Preuss, and Tiejun Ma. "Linear and rotary friction welding review." International Materials Reviews, Vol. 61, No. 2 (2016): 71-100.
28.   Yılmaz, M., M. Çöl, and M. Acet. "Interface properties of aluminum/steel friction-welded components." Materials Characterization, Vol. 49, No. 5 (2002): 421-429.
29.   Bouche, K., F. Barbier, and A. Coulet. "Intermetallic compound layer growth between solid iron and molten aluminium." Materials Science and Engineering: A, Vol. 249, No. 1-2 (1998): 167-175.
30.   Agudo, Leonardo, Dominique Eyidi, Christian H. Schmaranzer, Enno Arenholz, Nasrin Jank, Jürgen Bruckner, and Anke R. Pyzalla. "Intermetallic FexAly-phases in a steel/Al-alloy fusion weld." Journal of Materials Science, Vol. 42, No. 12 (2007): 4205-4214.
31.   Bouayad A., C. Gerometta, A. Belkebir, and A. Ambari, “Kinetic interactions between solid iron and molten aluminium,” Materials Science and Engineering: A, Vol. 363, No. 1–2, (2003), 53–61.
 
32.   Kobayashi S.and T. Yakou, “Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment,” Materials Science and Engineering: A, Vol. 338, No. 1–2, (2002), 44–53.
33.   Chen, Y. C., T. Komazaki, Y. G. Kim, T. Tsumura, and K. Nakata. "Interface microstructure study of friction stir lap joint of AC4C cast aluminum alloy and zinc-coated steel." Materials Chemistry and Physics, Vol. 111, No. 2-3 (2008): 375-380.
34.   Zhang H. T., J. C. Feng, and P. He, “Interfacial phenomena of cold metal transfer (CMT) welding of zinc coated steel and wrought aluminium,” Materials Science and Technology, Vol. 24, No. 11, (2008), 1346–1349.
35.   Chen, Y. C., and K. Nakata. "Effect of the surface state of steel on the microstructure and mechanical properties of dissimilar metal lap joints of aluminum and steel by friction stir welding." Metallurgical and Materials Transactions A, Vol. 39, No. 8 (2008): 1985–1992.
36.   Qian, Wang, Xue-song Leng, Tian-hao Yang, and Jiu-chun Yan. "Effects of Fe—Al intermetallic compounds on interfacial bonding of clad materials." Transactions of Nonferrous Metals Society of China, Vol. 24, No. 1 (2014): 279-284.
37.   Piccini, Joaquín M., and Hernán G. Svoboda. "Tool geometry optimization in friction stir spot welding of Al-steel joints." Journal of Manufacturing Processes, Vol. 26 (2017): 142-154.
38.   Taban, Emel, Jerry E. Gould, and John C. Lippold. "Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: Properties and microstructural characterization." Materials & Design, Vol. 31, No. 5 (2010): 2305-2311.
39.   Maalekian, Mehran. "Friction welding–critical assessment of literature." Science and Technology of Welding and Joining,12, No. 8 (2007): 738-759.
40.   Sammaiah P., A. Suresh, and G. R. N. Tagore, “Mechanical properties of friction welded 6063 aluminum alloy and austenitic stainless steel,”  Journal of Materials Science, Vol. 45, No. 20, (2010), 5512–5521.
41.   Kimura M., K. Suzuki, M. Kusaka, and K. Kaizu, “Effect of friction welding condition on joining phenomena , tensile strength , and bend ductility of friction welded joint between pure aluminium and AISI 304 stainless steel,” Journal of Manufacturing Processes, Vol. 25, (2017), 116–125.
42.   M. Kimura, K. Suzuki, M. Kusaka, and K. Kaizu, “Effect of friction welding condition on joining phenomena and mechanical properties of friction welded joint between 6063 aluminium alloy and AISI 304 stainless steel,” Journal of Manufacturing Processes, Vol. 26, (2017), 178–187.
43.   Su Y., X. Hua, and Y. Wu, “Materials Science & Engineering A Effect of input current modes on intermetallic layer and mechanical property of aluminum – steel lap joint obtained by gas metal arc welding,” Materials Science and Engineering: A, Vol. 578, (2013), 340–345.
44.   Ye, Zheng, Jihua Huang, Wei Gao, Yufeng Zhang, Zhi Cheng, Shuhai Chen, and Jian Yang. "Microstructure and mechanical properties of 5052 aluminum alloy/mild steel butt joint achieved by MIG-TIG double-sided arc welding-brazing." Materials & Design, Vol. 123 (2017): 69-79.
45.   Springer H., A. Kostka, J. F. Santos, and D. Raabe, “Influence of intermetallic phases and Kirkendall-porosity on the mechanical properties of joints between steel and aluminium alloys,” Materials Science and Engineering: A, Vol. 528, No. 13–14, (2011), 4630–464.