Application of the Avrami Theory for Wax Crystallisation of Synthetic Crude Oil

A. Hosseinipour*, A. Japper-Jaafar, S. Yusup, L. Ismail

Chemical Engineering Department, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
Centre for Advanced and Professional Education, Universiti Teknologi PETRONAS, Kuala Lumpur, Malaysia
Biomass Processing Laboratory, Centre for Biofuel and Biochemical Research, Institute of Sustainable Living, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Kelantan, Malaysia

Abstract

Wax crystallisation and deposition from offshore reservoirs have been causing serious problems such as plugged pipelines and reduced production flow rates. This issue is receiving more attention from the researchers and for commercial applications due to the shift in trend from using offshore production facilities to pipelines utilization. The aim of this study is the implementation of the Avrami theory to comprehend the mechanism of wax crystallisation to reveal the morphology of wax crystal using gravimetric and differential scanning calorimetry (DSC) analyses. The experiment values obtained from the Avrami’s theory for both gravimetric and DSC techniques shows that the crystals were one-dimensional with rod-like structures.

doi: 10.5829/ije.2019.32.01a.03

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM</td>
<td>American society for testing and materials</td>
</tr>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>FID</td>
<td>Flame Ionization Detector</td>
</tr>
<tr>
<td>X</td>
<td>Degree of crystallisation</td>
</tr>
<tr>
<td>K</td>
<td>Growth rate (min⁻¹)</td>
</tr>
<tr>
<td>n</td>
<td>Avrami exponent</td>
</tr>
<tr>
<td>PP</td>
<td>Pour point</td>
</tr>
<tr>
<td>WAT</td>
<td>Wax appearance temperature</td>
</tr>
<tr>
<td>δ∞</td>
<td>The maximum or asymptotic deposition (%)</td>
</tr>
<tr>
<td>δr</td>
<td>Relative deposition (%)</td>
</tr>
<tr>
<td>γt</td>
<td>Volume or volume fraction of crystallisation</td>
</tr>
<tr>
<td>δt</td>
<td>The total deposition at time t (%)</td>
</tr>
<tr>
<td>δ0</td>
<td>Initial wax in liquid (%)</td>
</tr>
</tbody>
</table>

1. Introduction

The relevancy of the paraffin deposition problem is now more pronounced and inevitable, owing to the fact that crude production has extended to offshore and ultra-deep oceans, with colder environments. However, the mitigation of paraffin deposition in the course of petroleum production has been an expensive process to pipelines utilization [1]. This shift satisfies both environmental and economic demands. Therefore, the importance of transporting waxy crude oils in surrounding seawater (277K in deep waters) has gained more attention in the oil industry [2-5].

Paraffin deposition and wax crystallisation depend on removal of wax deposits, predictions and prevention may cause blockage of the crude oil in the flowline. Numerous efforts which involve chemical treatments...
have been utilized to rectify wax crystallisation issues such as the application of additional chemical inhibitors, mechanical means including regular pigging of pipelines, thermal treatment involving circulation of warm liquid, and a reliable thermodynamic model based on experimental data to determine wax equilibria [4, 6-16].

Wax structures or morphology is one of the factors which have attracted much interest to comprehend wax crystallisation or precipitation, deposition and gelation in production facilities and transportation pipelines [1, 10, 17, 18]. Over the past few decades, several studies in the field of wax deposition have highlighted the importance and applications of Avrami theory in the oil industry. These studies have implemented the nongravimetric methods such as a cold finger, differential scanning calorimetry and rheometry [19-26] and gravimetric methods such as the oscillatory baffled tube apparatus [27]. The gravimetric experimental method was used according to Avrami theory to comprehend the mechanism and wax crystallisation kinetics. In the study by Lukman et al. [27] on the percentage of wax deposition, two opposite effects were observed by the oscillatory motion. Firstly, without the presence of any wax inhibitor or solvent at a low concentration of wax in the solution, oscillation considerably reduced the wax deposition by 40 to 60%. It also positively helped to prevent wax gelation from happening. Secondly, it had not been shown to prevent wax deposition; however, oscillatory motion accelerated the growth of the crystal to reach hundred percent wax deposition which was considered the disadvantage of this technique. However, less experimental attention has been devoted to the implementation of the gravimetric analysis to comprehend the kinetics and mechanism of wax crystallisation according to Avrami theory.

This study focused on wax crystallisation kinetics. The data acquisition required a shorter time to enable prediction, precipitation, and deposition for the oil inside the pipes and other facilities due to gravity. In addition, differential scanning calorimetry (DSC) was utilized to study Avrami theory on wax crystallisation mechanism and to reveal the morphology of wax crystal.

2. THE AVRAMI MECHANISM

In the oil pipelines, the wax crystallisation and deposition take place through the nucleation and crystallisation process. This process causes the oil to be trapped inside a network of crystals leading to gel formation, which can be termed as ‘bulk crystallisation’ [28]. In describing the crystallisation kinetics, the most reputable principle has been applied, i.e., Avrami phase transition equation, which describes how solids transform from one phase (state of matter) to another specifically description of the kinetics of crystallisation [29]. The molecular diffusion mechanism is considered as one of the dominant wax deposition mechanisms which have been widely accepted and used.

The crystallisation process is expected to start randomly at various locations from the nucleation sites and spread outwards. This is demonstrated by the conception of raindrops dropping in a pool creating wave circles that cross over each other while expanding to the whole surface. The raindrops may fall all at once or sporadically. Similarly, they may hit the surface of the pool randomly at different points. The waves’ expanding circles are viewed as the growth front of the spherulites, while the impact points are considered the crystallite nuclei [27]. Using probability derivations [30], the degree of crystallinity, X, which is considered the volume fraction of the crystalline material, could be shown as the following:

\[1 - X = e^{-E} \]
\[1 - X = e^{-W} \]
\[1 - X = e^{-k t^r} \]

The average number of all fronts in the system is represented by E. A suitable approximation of X ≥ E can be considered for the low degree of crystallinity. E in the exponent of Equation (1) for the bulk crystallisation will be likely considered as the volume fraction or the volume of the crystalline materials, Vc, and therefore,

\[1 - X = e^{-V c} \]

In bulk crystallisation, Equation (2) has been extensively recognized and applied to describe crystallisation [25, 31, 32]. This equation could be taken into account for sporadic or instantaneous nucleation and it could be shown as the following:

\[1 - X = e^{-k t^r} \]

K denotes the growth rate (min⁻¹), and n is the so-called Avrami exponent representing the nucleation’s nature and characterizes the crystal structure, and t is time (s) [33].

The present study uses the relative wax deposition to measure the degree of crystallinity (δr) being the deposition’s mass fractions on the test tube wall divided by the initial mass of the wax-oil liquid:

\[\delta_r = (\delta_a - \delta_0) / (\delta_a - \delta_b) \]

Where δr represents the total deposition at time t (min), wt%, δ0 the initial mass of the wax content in the liquid, (g) and δa the asymptotic or maximum deposition attained from the deposition curves when the quasi-steady state or the asymptotic condition has been accomplished (g). Replacing X by δr from Equation (4) and taking log twice in Equation (3), it can be written as follows:
As a result of plotting the \(\log(t) \) versus the left side in Equation (5), the intersection \(K \) and the slope of the straight line \(n \) can be found. The Avrami coefficient is helpful in understanding the mechanism of phase transformation and its effect on both nucleation and growth. Hay [34] derived a model for rods, discs and spheres using both \(K \) and \(n \) as the indicative tool of crystallisation mechanism to represent one-, two- and three-dimensional forms of growth, which are summarized in Table 1. The Avrami exponent \((n) \) has been frequently utilized in order to draw a distinction between different crystallisation mechanisms [35]; moreover, its theoretical value (1, 2, 3, or 4, etc.) is defined by the crystal growth and nucleation’s nature. Rod-like crystals represented by \(n = 1 \) correspond to the growth of instantaneous nuclei; while, \(n = 3 \) or \(4 \) indicates spherulitic growth from either instantaneous or sporadic nucleation [36].

3. EXPERIMENTAL WORK

3.1. Materials
Paraffin wax was purchased from Merck kGaA, Darmstadt, Germany, and it was in pastille form with a solidification point of 324–326K. Diesel fuel was purchased from a PETRONAS petrol station in Malaysia and was used as the solvent.

3.2. Experimental Apparatus and Method
In this work, a cooling thermostat (Lauda Alpha RA24) from LAUDA-Brinkmann, LP was used to control the test temperature. Also, a magnetic hotplate stirrer (Lab-Mix 20) from Fisher Scientific was used for heating and stirring the sample.

Table 1. The Avrami parameters for crystallisation of polymers [34]

<table>
<thead>
<tr>
<th>Crystallisation mechanism</th>
<th>(n)</th>
<th>Growth form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spheres</td>
<td></td>
<td>Three dimensions</td>
</tr>
<tr>
<td>Sporadic</td>
<td>4</td>
<td>Three dimensions</td>
</tr>
<tr>
<td>Instantaneous</td>
<td>3</td>
<td>Three dimensions</td>
</tr>
<tr>
<td>Discs(^a)</td>
<td></td>
<td>Three dimensions</td>
</tr>
<tr>
<td>Sporadic</td>
<td>3</td>
<td>Two dimensions</td>
</tr>
<tr>
<td>Instantaneous</td>
<td>2</td>
<td>Two dimensions</td>
</tr>
<tr>
<td>Rods(^a)</td>
<td></td>
<td>Two dimensions</td>
</tr>
<tr>
<td>Sporadic</td>
<td>2</td>
<td>One dimension</td>
</tr>
<tr>
<td>Instantaneous</td>
<td>1</td>
<td>One dimension</td>
</tr>
</tbody>
</table>

\(^a\) Constant thickness.
\(^b\) Constant radius.

A synthetic crude oil was made by adding 10% of the paraffin wax weight into diesel placed on a magnetic hotplate stirrer at a temperature of 323.15K to obtain a homogeneous solution. The wax concentration was fixed for all the experiments at 10% weight. Prior to any experiments, the synthetic crude oil was thoroughly covered to prevent evaporation then heated to a temperature of 323.15K using a magnetic hotplate stirrer at a speed of 200 rpm to dissolve the solid wax. The same procedure was repeated for all the experiments.

The GC Clarus 580 from PerkinElmer and a capillary column for Agilent J&W DB-2887 column were utilized to detect the normal alkynes and their compositions. This column is specifically designed for simulated distillation of ASTM Method D2887. Gas Chromatography-Flame Ionization Detector (GC-FID) was utilized by the Clarus 580 with 100% Dimethylpolysiloxane capillary column (10m × 0.530 mm × 3 μm) with part number 125.2814, and Nitrogen as the carrier gas. The CS2 was used as a solvent to dissolve samples before injection. The samples were prepared at a concentration of about 25 mass percent in the solvent (CS2). An injection containing one \(\mu \)L of the solution was prepared followed by heating in the oven for 2 minutes of equilibration at 298.15K and from 313.15K to 623.15K at a rate of 10K/min, and subsequently, the temperature was held constant for 31 min at the final temperature.

3.3. Nucleation and Crystallisation Analysis using the Gravimetric Method based on Avrami Equation
According to the ASTM D2500 and ASTM D97, 40ml is the best volume for evaluating the cloud point and pour point. The initial temperature \(T_j \) was adjusted at 323.15K, considering it was well above the wax appearance temperature (WAT) of the synthetic crude oil to allow complete dissolution. Various temperatures lower than the WAT were selected for \(T_j \) (278.15, 283.15, 288.15 and 293.15K). \(T_j \) refers to the wall temperature which is controlled by cooling a thermostat. The cloud point and pour point of the sample were measured according to the ASTM D2500 and ASTM D97, respectively. The cloud point was measured 301.15K by observing the onset of cloudiness of the solution and the pour point was measured to be 297.15K by observing the lowest temperature at which the specimen did not show any movement when tilted.

As depicted in Figure 1, a schematic graph of the wax deposition system is similar to the pipe in reality during shut-in procedures. The system involves a cold bath with water circulation which helps to maintain the temperature of the water and a test tube to examine the deposition of wax.
After the synthetic crude oil was heated using a magnetic hotplate stirrer to dissolve the solid wax, a 40ml volume was evaluated by using a measuring cylinder before being pouring into a test tube. A 10-minute time was considered as the typical experimental duration to measure wax deposition. The measurements were made at time intervals of 1, 2, 3, 5, 7 and 10 minutes.

The amount of mass deposition was measured using the gravimetric method. Initially, the synthetic crude oil was heated up to T_1 (323.15K) for about 20 minutes while stirring to allow all of the paraffin waxes to dissolve into the liquid. The desired volume was obtained using the measuring cylinder and was then transferred to the test tube. The mass of each volume was measured based on an analytical lab scale and then the sample was immersed into the cooling thermostat so that an axially symmetric thermal field was produced through the sample. After each desired time, the test tube was taken out, the non-deposited part of the sample was drained out through gravity to a beaker and then the deposited wax was weighted. The same procedure was repeated for different volumes and temperatures. At the end, the amount of deposit was measured as a weight percentage of the total wax. To confirm repeatability, the experiments were measured in triplicate.

3. 4. Nucleation and Crystallisation Analysis using the DSC Method based on Avrami Equation

Chen et al. [37] found a good linear relationship between the Qoil and the related wax contents defined individually by Qoil/Qwax and standard acetone methods. There is a linear relationship between the corresponding wax contents and the Qoil represented via Equation (6) with a R-squared of 0.9837.

$$C_{wax} = 0.75Q_{oil} + 0.2$$ \hspace{1cm} (6)$$

where the total thermal effect Q of crude oil between the WAT and 253.15K (--20°C) is Q_{oil} (J/g), and C_{wax} (wt.%) is the wax content. The linear relationship between the wax contents calculated by the standard acetone method and the Q_{oil} is shown in Equation (7) with an R-squared 0.9651.

$$C_{wax} = 0.73Q_{oil} + 0.74$$ \hspace{1cm} (7)$$

Based on the empirical correlations in Equations (6) and (7) and assuming that the Q_{oil} (J/g) was calculated in the temperature range from the WAT to 253.15K (--20°C), the wax content of the synthetic crude oil was calculated as $C_{wax} = 10.34$ and $C_{wax} = 10.64$ for the DSC and the acetone standard method, respectively. The wax content values were slightly above the 10 percent by weight when paraffin wax was added to diesel to produce synthetic crude oil. However, Q_{oil} of the synthetic crude oil was not calculated based on Chen et al. [37]'s method (i.e. the sample was not run from the WAT to 253.15K (--20°C)). Therefore, corrections and adjustments (extrapolation to 253.15K (--20°C)) were then necessary to calculate the percentage of the total wax content precipitated from WAT to approximately 283.15K (10°C).

Figures 2 and 3 show the total heat release for the pure paraffin wax with the synthetic crude oil being -157.284 (J/g) and -13.521 (J/g), respectively. In Figure 2, it is assumed that the crystallisation process is complete when the starting point (WAT) and the ending point of the baseline meet each other. According to Chen et al. [37]'s method, it can be seen from Figure 3 that the crystallisation process has not been completed.

Based on Chen et al. [37], the wax content calculated by Q_{oil}/Q_{wax} showed that the analysis and calculation of the pure paraffin wax has 100% wax content by weight (Figure 2). However, due to incomplete crystallisation in the synthetic crude oil, the Q_{oil}/Q_{wax} is about 8.6% which is 86% of the total wax crystallisation. The total crystallisation heat of the synthetic crude oil contributed to the total 86% (-13.521 J/g) of the heat released from the WAT to 283.15K (10°C) plus the remaining 14% (-1.893J/g) from 283.15K (10°C) to 253.15K (--20°C). As the total crystallisation heat became -15.414 (J/g), Chen et al. [37]'s correlation for the DSC technique (Equation 6) could be rewritten as follows:

$$C_{wax} = 0.635|Q_{oil}| + 0.2$$ \hspace{1cm} (8)$$

which can be considered under the condition that the sample can run only until 283.15K (10°C). All the calculations in the Avrami’s theory by DSC are based on this new correlation (Equation (8)).

From the DSC curves in determination of the wax solubility curve done by Alcazar-Vara and Buenrostro-Gonzalez [38], the values of the relative crystallinity $X(T)$ at various cooling rates can be measured. The relative crystallinity can be written as a function of temperature as below:

$$X(T) = \frac{\int (dH / dT) dT}{\Delta H_0}$$ \hspace{1cm} (9)$$
where dH_c is the crystallization’s enthalpy released in an infinitesimal temperature range dT, T_o and T related to the onset and arbitrary temperatures, correspondingly. And for a specific cooling range, ΔH_c is the total enthalpy of crystallization.

Based on the procedure which was explained above, Avrami method is used to analyze the crystallisation kinetics and the equation can be written as:

$$1 - X(t) = \exp(-Kt^n)$$

(10)

or

$$\log\left(-\ln\left[1 - X(t)\right]\right) = \log K + n\log t$$

(11)

4. RESULTS AND DISCUSSIONS

In this research, the gravimetric method [27] is used to study the effect of different volumes and temperatures on nucleation and crystallisation of synthetic crude oil. This section discusses the Avrami theory using firstly the gravimetric and secondly the DSC techniques to investigate the wax crystallisation kinetics of the synthetic crude oil.

4.1. Characterization of the Synthetic Crude Oil and Paraffin Wax

The paraffin wax and synthetic crude oil’s compositions are characterized by GC-FID based on the ASTM-D2887. The analyses are presented in Tables 2 and 3. The crystallisation point, physical form and their structures are based on a handbook of chemistry and physics and a handbook of data on common organic compounds [39-41]. One of the reasons for wax crystallisation issue lies in the molecular composition of the wax molecules and their interactions in the crude oil. These interactions are caused by VdW forces which have a direct influence on wax crystallisation [42].

The results based on the crystallisation point, physical form, types of hydrocarbons and their structures show that this synthetic crude oil consists of normal paraffins, and thus have a tendency towards wax crystallisation and deposition in transportation pipelines. Table 3 shows that this tendency might be higher for this synthetic crude oil due its content of normal paraffins with carbon atom numbers greater than 16 [43]. Therefore, as a general practice, utilization of a wax inhibitor, regular pigging, thermal treatment and other remediation strategies are necessary to avoid pipeline plugging.
TABLE 2. Analysis of the paraffin wax

<table>
<thead>
<tr>
<th>Components</th>
<th>Formula</th>
<th>Crystalisation Point (K)</th>
<th>Physical form</th>
<th>H/C type</th>
<th>Raw Amount</th>
<th>Relative Composition(^n) (wt %)</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonadecane</td>
<td>C({19})H({40})</td>
<td>305.15</td>
<td>solid</td>
<td>N-P</td>
<td>0.0005</td>
<td>0.0997</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Eicosane</td>
<td>C({20})H({42})</td>
<td>309.75</td>
<td>solid</td>
<td>N-P</td>
<td>0.0026</td>
<td>0.5315</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Heneicosane</td>
<td>C({22})H({44})</td>
<td>313.65</td>
<td>solid</td>
<td>N-P</td>
<td>0.0125</td>
<td>2.5136</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Docosane</td>
<td>C({22})H({46})</td>
<td>317.55</td>
<td>solid</td>
<td>N-P</td>
<td>0.0391</td>
<td>7.8286</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Tricosane</td>
<td>C({24})H({48})</td>
<td>320.91</td>
<td>solid</td>
<td>N-P</td>
<td>0.0780</td>
<td>15.5907</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Tetracosane</td>
<td>C({25})H({50})</td>
<td>323.55</td>
<td>solid</td>
<td>N-P</td>
<td>0.1107</td>
<td>22.1349</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Pentacosane</td>
<td>C({25})H({52})</td>
<td>327.08</td>
<td>solid</td>
<td>N-P</td>
<td>0.1047</td>
<td>20.9279</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Hexacosane</td>
<td>C({26})H({54})</td>
<td>329.25</td>
<td>solid</td>
<td>N-P</td>
<td>0.0768</td>
<td>15.3693</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Heptacosane</td>
<td>C({27})H({56})</td>
<td>332.65</td>
<td>solid</td>
<td>N-P</td>
<td>0.0418</td>
<td>8.3490</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Octacosane</td>
<td>C({28})H({58})</td>
<td>337.65</td>
<td>solid</td>
<td>N-P</td>
<td>0.0178</td>
<td>3.5544</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Nonacosane</td>
<td>C({29})H({60})</td>
<td>336.85</td>
<td>solid</td>
<td>N-P</td>
<td>0.0066</td>
<td>1.3177</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Tricantane</td>
<td>C({32})H({62})</td>
<td>338.25</td>
<td>solid</td>
<td>N-P</td>
<td>0.0028</td>
<td>0.5536</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Hentriacantane</td>
<td>C({31})H({64})</td>
<td>341.05</td>
<td>solid</td>
<td>N-P</td>
<td>0.0016</td>
<td>0.3211</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Dotriacantane</td>
<td>C({32})H({66})</td>
<td>342.85</td>
<td>solid</td>
<td>N-P</td>
<td>0.0024</td>
<td>0.4761</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Tritriacantane</td>
<td>C({33})H({68})</td>
<td>344.35</td>
<td>solid</td>
<td>N-P</td>
<td>0.0002</td>
<td>0.0332</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Hexatriacantane</td>
<td>C({34})H({70})</td>
<td>348.95</td>
<td>solid</td>
<td>N-P</td>
<td>0.0014</td>
<td>0.2879</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Tetracontane</td>
<td>C({40})H({72})</td>
<td>354.65</td>
<td>solid</td>
<td>N-P</td>
<td>0.0006</td>
<td>0.1107</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td>0.16(^a)</td>
<td>solid</td>
<td>N-P</td>
<td>0.0009(^c)</td>
<td>[\ldots]</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td>0.05(^b)</td>
<td>solid</td>
<td>N-P</td>
<td>0.0003(^d)</td>
<td>[\ldots]</td>
<td></td>
</tr>
</tbody>
</table>

\(a:\) Relative Composition (wt %) = \(\frac{\text{Peak area of desired component}}{\text{Peak area of n-dodecane (C\(_{12}\)H\(_{26}\))}} \times 100\)

\(b, c, d:\) Peak area; Raw amount

TABLE 3. Analysis of the synthetic crude oil

<table>
<thead>
<tr>
<th>Components</th>
<th>Formula</th>
<th>Crystalisation Point (K)</th>
<th>Physical form</th>
<th>H/C type</th>
<th>Raw amount</th>
<th>Relative Composition(^n) (wt %)</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octane</td>
<td>C({6})H({13})</td>
<td>216.33</td>
<td>solid</td>
<td>N-P</td>
<td>0.0068</td>
<td>0.3235</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Nonane</td>
<td>C({6})H({12})</td>
<td>219.69</td>
<td>solid</td>
<td>N-P</td>
<td>0.0059</td>
<td>0.2894</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Decane</td>
<td>C({6})H({12})</td>
<td>243.55</td>
<td>solid</td>
<td>N-P</td>
<td>0.0353</td>
<td>1.7024</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Undecane</td>
<td>C({11})H({22})</td>
<td>247.65</td>
<td>solid</td>
<td>N-P</td>
<td>0.0695</td>
<td>3.3538</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Dodecane</td>
<td>C({12})H({26})</td>
<td>263.58</td>
<td>solid</td>
<td>N-P</td>
<td>0.0586</td>
<td>2.8260</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Tetradecane</td>
<td>C({13})H({26})</td>
<td>278.97</td>
<td>solid</td>
<td>N-P</td>
<td>0.1756</td>
<td>8.4610</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Pentadecane</td>
<td>C({15})H({32})</td>
<td>283.1</td>
<td>solid</td>
<td>N-P</td>
<td>0.2170</td>
<td>10.4528</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Hexadecane</td>
<td>C({16})H({34})</td>
<td>291.27</td>
<td>solid</td>
<td>N-P</td>
<td>0.2158</td>
<td>10.4018</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Heptadecane</td>
<td>C({17})H({36})</td>
<td>295.15</td>
<td>solid</td>
<td>N-P</td>
<td>0.1913</td>
<td>9.2271</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Octadecane</td>
<td>C({18})H({40})</td>
<td>301.35</td>
<td>solid</td>
<td>N-P</td>
<td>0.1921</td>
<td>9.2612</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Nonadecane</td>
<td>C({19})H({40})</td>
<td>305.15</td>
<td>solid</td>
<td>N-P</td>
<td>0.1927</td>
<td>9.2952</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Eicosane</td>
<td>C({20})H({42})</td>
<td>309.75</td>
<td>solid</td>
<td>N-P</td>
<td>0.1058</td>
<td>5.1073</td>
<td>[\ldots]</td>
</tr>
<tr>
<td>Heneicosane</td>
<td>C({21})H({44})</td>
<td>313.65</td>
<td>solid</td>
<td>N-P</td>
<td>0.1431</td>
<td>6.8948</td>
<td>[\ldots]</td>
</tr>
</tbody>
</table>
Docosane $\text{C}_{22}\text{H}_{46}$ 317.55 solid N-P 0.1142 5.5158
Tricosane $\text{C}_{23}\text{H}_{46}$ 320.91 solid N-P 0.0846 4.0688
Tetracosane $\text{C}_{24}\text{H}_{50}$ 323.55 solid N-P 0.0968 4.6646
Hexacosane $\text{C}_{25}\text{H}_{52}$ 327.08 solid N-P 0.0769 3.7113
Heptacosane $\text{C}_{27}\text{H}_{56}$ 332.65 solid N-P 0.0234 1.1236
Octacosane $\text{C}_{28}\text{H}_{58}$ 337.65 solid N-P 0.0102 0.4937
Nonacosane $\text{C}_{29}\text{H}_{60}$ 338.85 solid N-P 0.0049 0.2383
Triacanthane $\text{C}_{30}\text{H}_{62}$ 342.85 solid N-P 0.0013 0.0681
Tetraacanthane $\text{C}_{32}\text{H}_{66}$ 344.35 solid N-P 0.0002 0.0170
Hexatriacanthane $\text{C}_{34}\text{H}_{74}$ 348.95 solid N-P 0.0011 0.0511
Tetraacanthane $\text{C}_{32}\text{H}_{66}$ 358.75 solid N-P 0.0004 0.0170
Unknown 3.47b 0.1227c
Unknown 2.71b 0.0959c
Unknown 0.06b 0.0019c
Unknown 0.06b 0.0022c

4.1. The Mechanism of Crystallisation Based on the Avrami Theory Using the Gravimetric Technique

From the deposition profile demonstrated in Figure 4, the formation of wax can be generally categorized into three main divisions: the nucleation phase, the growth phase and the quasi-steady state. The first and second sections are combined as a single step as the nucleation is too fast to be measured in most related studies [27]. Usually, the growth phase occurred in the first 2 or 3 minutes of the experiments for most of the solutions. Using the Avrami theory to analyze the growth phase curves, one can extract some crystallisation/deposition kinetics.

Figure 5 plots $\log(-\ln(1-\delta_j))$ versus $\log(t)$ to obtain the Avrami parameters using the gravimetric technique. Good linearity is seen in this figure for the gravimetric techniques which demonstrates the efficiency of the Avrami theory. The temperature difference is defined as the pour point minus the test temperature (T_2). It was observed that for the 40ml volume the temperature difference decreased, where the Avrami’s exponent values were found to be between 1 to 1.44 indicating that the crystals were one-dimensional and rod-like. An Olympus BX53 cross-polarized optical microscope instrument was used to obtain the crystal shape in Figure 6. Clearly the shapes of crystals shown in Figure 6 are matched well with kinetic evaluations. With an increase in the Avrami’s exponent, the crystallization mechanism changed from instantaneous to sporadic. This is observed for testing temperatures closer to the pour point, i.e. smaller temperature differences.

Figure 5. The effect of different temperatures on the Avrami parameters at a constant volume of 40ml

Figure 6. The wax structure of the synthetic crude oil at 293.15K
Lukman et al. [27] employed an oscillatory baffled tube device in order to develop an understanding of the mechanism and wax crystallisation kinetics through the gravimetric experimental technique according to the Avrami theory. He concluded that without the oscillation, the wax crystals were in one-dimensional growth and of a rod-like shape. However, at 10% wax concentration due to oscillatory motion, the Avrami constants approached four indicating the change from needle-like crystals into sphere-like crystals. This observation was verified by a microscope showing the crystals’ shape that clearly matched well with the kinetic analyses.

4.2. The Mechanism of Crystallisation Based on the Avrami Theory Using the DSC Technique

The measurement norm of DSC relies on the examination of the variance in the heat flows to the sample cell and the reference cell. These heat flows are linearly proportional to the temperature variance between the cell and the furnace. However, it is inversely proportional to the thermal resistance of the system mentioned above. This method is based on the detection of heat released during crystallization, which gives rise to an exothermic peak on cooling [44].

In Equation (12), through plotting the left side versus log(t), the intersection K and the slope of the straight line n can be found, where K denotes the growth rate and n is the so-called Avrami exponent which represents the nucleation’s nature and characterizes the structure of the crystal, and t is time.

The result of the Avrami kinetics analyses in Figure 7 point out that the Avrami’s exponent value is 1.5418. Based on the Avrami’s exponent value, the crystals would be of a rod-like shape in one-dimensional growth. Obviously, the shapes of the crystals presented in Figure 6 are corresponding well with the kinetic analyses. On this account, the Avrami kinetics analyses could be considered as a reliable method to comprehend the kinetics and mechanism of the wax crystallisation by using the DSC technique.

5. Conclusions

The Avrami theory was successful in determination of the initiation of wax crystallisation. Based on the Avrami exponent values (n) (1 to 1.44 and 1.54) for the gravimetric and DSC technique respectively, the crystals were one-dimensional, rode-like or needle-like. Both gravimetric and differential scanning calorimetry techniques were successful in defining the crystallisation kinetics and the shape of crystals.

6. Acknowledgment

The authors wish to thank Universiti Teknologi PETRONAS (UTP), for providing financial support in this study. The authors also would like to express their appreciation to Dr. Bhajan Lal and Dr. Behzad Partoon from phase separation lab for his assistance in providing the lab facilities.

7. References

![Figure 7](image-url)
Application of the Avrami Theory for Wax Crystallisation of Synthetic Crude Oil

A. Hosseinipoura, A. Japper-Jaafarb, S. Yusupc, L. Ismaild

aChemical Engineering Department, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
bCentre for Advanced and Professional Education, Universiti Teknologi PETRONAS, Kuala Lumpur, Malaysia
cBiomass Processing Laboratory, Centre for Biofuel and Biochemical Research, Institute of Sustainable Living, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
dFaculty of Agro-Based Industry, Universiti Malaysia Kelantan, Kelantan, Malaysia

Abstract

Paraffin wax crystallisation is a critical phenomenon that leads to serious problems such as pipe blockages and reduced oil production. This study aims to apply the Avrami theory to understand the crystallisation mechanism of wax, using differential scanning calorimetry (DSC) and thermal analysis. The theoretical results obtained from the Avrami theory show that the wax crystals are one-dimensional with spherelike structures. doi: 10.5829/ije.2019.32.01a.03