A New Analog-based LO Harmonic Rejection Technique with Tunable Notch Frequency


Department of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran


An effective technique for mixer LO harmonic rejection in a SAW-less wideband receiver front-end is proposed. The proposed technique provides a tunable notch that can be placed at any frequency like mixer LO harmonics, to avoid the aliasing in baseband after mixing. An analog LC notch is used in a cascode transconductor, and it can reject one of the 3rd or 5th harmonics. This notch frequency is tunable using the bond wire inductors or fixed Gyrator-C active inductor, and a capacitor array, without any significant Power/Area overhead on overall system. Since the accurate value of inductance is not clear, a calibration circuit is proposed to tune this LC notch. This tuning phase runs in forground, and consumes very low additional power. This technique is used in a wideband receiver front-end. Post-layout simulation in 130nm CMOS results in an average 3rd harmonic rejection ratio of 36 dB. The overall circuit consums 34mW power and a has a noise figure of 3.4dB at 1GHz frequency.


1.     Gray, P.R. and Meyer, R.G., "Future directions in silicon ics for rf personal communications", in Custom Integrated Circuits Conference, 1995., Proceedings of the IEEE 1995, (1995), 83-90.

2.     Cho, T., Dukatz, E., Mack, M., Macnally, D., Marringa, M., Mehta, S., Nilson, C., Plouvier, L. and Rabii, S., "A single-chip cmos direct-conversion transceiver for 900 mhz spread-spectrum digital cordless phones", in Solid-State Circuits Conference, 1999. Digest of Technical Papers. ISSCC. 1999 IEEE International, (1999), 228-229.

3.     Borremans, J., Mandal, G., Giannini, V., Debaillie, B., Ingels, M., Sano, T., Verbruggen, B. and Craninckx, J., "A 40 nm cmos 0.4–6 ghz receiver resilient to out-of-band blockers", IEEE Journal of Solid-State Circuits,  Vol. 46, No. 7, (2011), 1659-1671.

4.     Soer, M.C., Klumperink, E.A., Ru, Z., van Vliet, F.E. and Nauta, B., "A 0.2-to-2.0 ghz 65nm cmos receiver without lna achieving≫ 11dbm iip3 and≪ 6.5 db nf", in Solid-State Circuits Conference-Digest of Technical Papers, 2009. ISSCC. IEEE International, (2009), 222-223.

5.     Ru, Z., Klumperink, E.A., Wienk, G.J. and Nauta, B., "A software-defined radio receiver architecture robust to out-of-band interference", in Solid-State Circuits Conference-Digest of Technical Papers, 2009. ISSCC. International, IEEE., (2009), 230-231.

6.     Andrews, C. and Molnar, A.C., "A passive-mixer-first receiver with baseband-controlled rf impedance matching,≪ 6db nf, and≫ 27dbm wideband iip3", in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), IEEE International, (2010), 46-47.

7.     Murphy, D., Darabi, H., Abidi, A., Hafez, A.A., Mirzaei, A., Mikhemar, M. and Chang, M.-C.F., "A blocker-tolerant, noise-cancelling receiver suitable for wideband wireless applications", IEEE Journal of Solid-State Circuits,  Vol. 47, No. 12, (2012), 2943-2963.

8.     Murphy, D., Darabi, H. and Xu, H., "A noise-cancelling receiver resilient to large harmonic blockers", IEEE Journal of Solid-State Circuits,  Vol. 50, No. 6, (2015), 1336-1350.

9.     Weldon, J.A., Narayanaswami, R.S., Rudell, J.C., Lin, L., Otsuka, M., Dedieu, S., Tee, L., Tsai, K.-C., Lee, C.-W. and Gray, P.R., "A 1.75-ghz highly integrated narrow-band cmos transmitter with harmonic-rejection mixers", IEEE Journal of Solid-State Circuits,  Vol. 36, No. 12, (2001), 2003-2015.

10.   Bagheri, R., Mirzaei, A., Chehrazi, S., Heidari, M.E., Lee, M., Mikhemar, M., Tang, W. and Abidi, A.A., "An 800-mhz–6-ghz software-defined wireless receiver in 90-nm cmos", IEEE Journal of Solid-State Circuits,  Vol. 41, No. 12, (2006), 2860-2876.

11.   Zhang, H., Gao, T.B., Tan, S.C.G. and Shana'a, O., "A harmonic-rejection mixer with improved design algorithm for broadband tv tuners", in Radio Frequency Integrated Circuits Symposium (RFIC), IEEE,  (2012), 163-166.

12.   Von Grunigen, D., Sigg, R., Schmid, J., Moschytz, G. and Melchior, H., "An integrated cmos switched-capacitor bandpass filter based on n-path and frequency-sampling principles", IEEE Journal of Solid-State Circuits,  Vol. 18, No. 6, (1983), 753-761.

13.   El Oualkadi, A., El Kaamouchi, M., Paillot, J.-M., Vanhoenacker-Janvier, D. and Flandre, D., "Fully integrated high-q switched capacitor bandpass filter with center frequency and bandwidth tuning", in Radio Frequency Integrated Circuits (RFIC) Symposium, IEEE., (2007), 681-684.

14.   Cook, B.W., Berny, A., Molnar, A., Lanzisera, S. and Pister, K.S., "Low-power 2.4-ghz transceiver with passive rx front-end and 400-mv supply", IEEE Journal of Solid-State Circuits,  Vol. 41, No. 12, (2006), 2757-2766.

 15.   Mirzaei, A., Darabi, H., Leete, J.C., Chen, X., Juan, K. and Yazdi, A., "Analysis and optimization of current-driven passive mixers in narrowband direct-conversion receivers", IEEE Journal of Solid-State Circuits,  Vol. 44, No. 10, (2009), 2678-2688.

16.   Lin, D.T., Li, L., Farahani, S. and Flynn, M.P., "A flexible 500 mhz to 3.6 ghz wireless receiver with configurable dt fir and iir filter embedded in a 7b 21 ms/s sar adc", IEEE Transactions on Circuits and Systems-I-Regular Papers,  Vol. 59, No. 12, (2012), 2846.

17.   Seo, H., Choi, I., Park, C., Yoon, J. and Kim, B., "A wideband digital rf receiver front-end employing a new discrete-time filter for m-wimax", IEEE Journal of Solid-State Circuits,  Vol. 47, No. 5, (2012), 1165-1174.

18.   Ru, Z., Klumperink, E.A. and Nauta, B., "Discrete-time mixing receiver architecture for rf-sampling software-defined radio", IEEE Journal of Solid-State Circuits,  Vol. 45, No. 9, (2010), 1732-1745.

19.   Geis, A., Ryckaert, J., Bos, L., Vandersteen, G., Rolain, Y. and Craninckx, J., "A 0.5 mm $^{2} $ power-scalable 0.5–3.8-ghz cmos dt-sdr receiver with second-order rf band-pass sampler", IEEE Journal of Solid-State Circuits,  Vol. 45, No. 11, (2010), 2375-2387.

20.   Staszewski, R.B., Muhammad, K., Leipold, D., Hung, C.-M., Ho, Y.-C., Wallberg, J.L., Fernando, C., Maggio, K., Staszewski, R. and Jung, T., "All-digital tx frequency synthesizer and discrete-time receiver for bluetooth radio in 130-nm cmos", IEEE Journal of Solid-State Circuits,  Vol. 39, No. 12, (2004), 2278-2291.

21.   Jakonis, D., Folkesson, K., Dbrowski, J., Eriksson, P. and Svensson, C., "A 2.4-ghz rf sampling receiver front-end in 0.18-/spl mu/m cmos", IEEE Journal of Solid-State Circuits,  Vol. 40, No. 6, (2005), 1265-1277.

22.   Wu, L., Ng, A.W., Zheng, S., Leung, H.F., Chao, Y., Li, A. and Luong, H.C., "A 0.9–5.8-ghz software-defined receiver rf front-end with transformer-based current-gain boosting and harmonic rejection calibration", IEEE Transactions on Very Large Scale Integration (VLSI) Systems,  Vol. 25, No. 8, (2017), 2371-2382.

23.   Yang, T., Tripurari, K., Krishnaswamy, H. and Kinget, P.R., "A 0.5 ghz–1.5 ghz order scalable harmonic rejection mixer", in Radio Frequency Integrated Circuits Symposium (RFIC), IEEE, (2013), 411-414.

24.   Bazrafshan, A., Taherzadeh-Sani, M. and Nabki, F., "A 0.8-4-ghz software-defined radio receiver with improved harmonic rejection through non-overlapped clocking", IEEE Transactions on Circuits and Systems I: Regular Papers,  Vol. 65, No. 10, (2018).

25.   Yuan, F., "Cmos active inductors and transformers: Principle, implementation, and applications, Springer Science & Business Media,  (2008).