Assessment of Particle-size and Temperature Effect of Nanofluid on Heat Transfer Adopting Lattice Boltzmann Model

A. Shahriari, N. Jahantigh, F. Rakani

1. INTRODUCTION

The laminar free convective heat transfer plays an important role in engineering science and industrial field. It has many thermal and engineering applications like furnaces, double pane windows, heat exchangers, cooling and heating building, solar technology, structure insulating, cooling of electronic instruments, etc. [1].

Calgagni et al. [2] and Kuznik et al. [3] have investigated the free convective heat transfer within an enclosure in various studies.

The performance of systems with basic operation fluid for instance water, types of oils do not increase because their thermal conductivity is low and these fluids do not have compactness capability. Choi has presented a new technique to improve heat transfer which uses dispersion solid particles in the nanoscale dimension (size <100nm) in a thermal system with a base fluid [4].

Permission of systems with basic operation fluid for instance water, types of oils do not increase because their thermal conductivity is low and these fluids do not have compactness capability. Choi has presented a new technique to improve heat transfer which uses dispersion solid particles in the nanoscale dimension (size <100nm) in a thermal system with a base fluid [4].

The clogging in micro channels does not occur in systems that the mixture of fluid and nanoparticles is used because of unique physical and chemical properties including low sedimentation, high thermal conductivity and stability in comparison with particles having millimeter or micrometer size.

Study on nano-fluids is in high interests due to their properties and other benefits for example pumping reduction, homogeneity, and long-term stability [5].

The effect of Brownian motion on natural convection, simulation and prediction of dissipative nanofluid flow as well as similarity solution for mixed-convection boundary layer nanofluid flow were reported in literature [6-8].

Murshed et al. [9], Choi et al. [10], and Kanafer et al. [11] have demonstrated the behavior of solid particles in cavity is similar to liquid molecules having large specific surface areas nanoparticles because of very small sizes. The natural convection heat transfer was experimentally investigated on different nano fluids by Putra et al. [12] and Wen and Ding [13]. They found...
that the natural convection heat transfer does not increase with increment of the nanoparticles concentration. The thermal parameters of free convection within an enclosure including Al₂O₃- water nanofluid has studied theoretically by Hwang et al. [14]. They applied various models to calculate dynamic viscosity. Also, they used the empirical relations to estimate the coefficient of the nanofluid heat transfer. They found that nanoparticles had adverse effects on heat transfer in the free convection regime. As shown in the diagrams of coefficient of heat transfer and Nusselt number correlation, the Nu number increases along with increment of the nanoparticles’ average diameter or decrement the nanofluid temperature. Kim et al. [15] studied the convection instability of free convection nanofluid through RB regime analytically and observed a similar process. The convective heat transfer coefficient has increased because of the presence of solid particles. Khanafer et al. [11] has studied the heat transfer within an enclosure, which heated differentially including Copper nanoparticle numerically while Gr varying between 10⁴ to 10⁵. They observed that the rate of heat transfer has raised due to increasing of the suspended nanoparticles percentage through the various Gr number. Lin and Violi [16] have examined the free convection regime in a vertical enclosure including Alumina nanoparticle containing different volume fractions, Grashof and Prandtl numbers and nanoparticles’ mean diameter numerically. They adopted the presented model by Jang et al. [17] toward define the effective viscosity (the temperature is not effective in this model) and also the model presented by Xu et al. [18] for determination of the effective thermal conductivity. They indicated that the heat transfer parameters of the nanofluid can be increased as the particle’s sized is reduced from 250 to 5 nm. Moreover, the augment of mixture temperature causes to enhance the effect of nanoparticles’ mean diameter inside the cavity. They found a direct relation between Nusselt number and nanoparticle volume fraction increase for constant nanoparticles’ mean diameter and temperature, which is in contrast with experimental data reported in literature [19, 20].

It was concluded that the dynamic viscosity of nanofluid depends on the nanoparticles’ mean diameter and the nanofluid temperature Nguyen et al. [19], Li et al. [20], and Masoumi et al. [21]. The natural convection of nanofluids articles have not been studied the impact of temperature in effective dynamic viscosity models.

In recent years, due to advantages of numerical methods including LBM such as simplicity of programming, possibility of parallel computation, and easy application of boundary conditions have been used extensively.

To the best knowledge of the researchers here, there is not any available papers that considered LBM method to investigate the impacts of nanoparticles mean diameter and temperature of nanofluid on the flow and heat transfer parameters. Thus, in this study, some models are adopted to determine the nanofluid dynamic viscosity and thermal conductivity. Masoumi [21] model is applied to calculate the effective dynamic viscosity and the Chon [22] model is used to define the thermal conductivity. These models include both effects of the nanoparticles’ mean diameter and nanofluid temperature that are based on the experimental measurements. In this study, the effects of pertinent parameters for instance Gr and Prandtl numbers and solid particle volume fraction on the nanofluid heat transfer characteristic insight an enclosure were investigated.

2. PROBLEM STATEMENT

The geometry of a square enclosure with the size of W×H applied in computational area is displayed schematically in Figure 1. It is observed from Figure 1 that the right and left vertical surfaces are flat and heated at the temperature Tᵣ and Tᵢ, respectively. The horizontal top and bottom smooth surfaces are insulated against heat and mass. Nanofluid within the cavity is initially at rest (particle volume fraction can fluctuate as 0≤φ≤5%). Next, the temperature difference between left and right walls causes a buoyancy force and fluid motion. In addition, the variation of density is insignificant thus; Boussinesq approximation is used to coupling velocity and thermal fields equations.

In the present study, the flow of a nanofluid which consists of water and aluminum oxide nanoparticles is subjected to the assumptions of incompressible, single-phase, no-chemical reaction, no-slippage between water and solid nanoparticles, negligible thermal radiation and viscous dissipation due to its small effects. Also, it is supposed that the flow to be laminar and steady. The physical and thermal properties of water and aluminum oxide particles were tabulated in Table 1.

![Figure 1. Graphical representation of the system under consideration](image-url)
TABLE 1. properties of the water and aluminum oxide particles

<table>
<thead>
<tr>
<th>Properties</th>
<th>H₂O</th>
<th>Aluminium Oxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cₚ (J/kgK)</td>
<td>4179</td>
<td>765</td>
</tr>
<tr>
<td>ρ (kg/m³)</td>
<td>997.1</td>
<td>3970</td>
</tr>
<tr>
<td>k (W/mK)</td>
<td>0.613</td>
<td>25</td>
</tr>
<tr>
<td>β×10⁴(1/K)</td>
<td>21</td>
<td>0.85</td>
</tr>
<tr>
<td>dp (nm)</td>
<td>0.384</td>
<td>24.47 and 100</td>
</tr>
</tbody>
</table>

The value of Prandtl numbers were 5.83 and 3.42 for temperatures of 300⁰K and 325⁰K, respectively. The variations of alumina nanofluid physical and thermal properties are negligible with respect the temperature, except in Boussinesq approximation.

3. NUMERICAL APPROACH

Here a discussion about thermal lattice Boltzmann method is presented due to its relevant to the present study. Thermal LMB uses of the distribution function f_i for velocity field and distribution functions g_i for energy field. A standard two-dimensional nine-velocity called D2Q9 lattice Boltzmann method with Bhatnagar–Gross–Krook approximation is employed for the flow field, in the computational domain here as shown in Figure 2.

For the evolution of velocity field, the LB equation can be discretized as following [23]:

\[f_i(\vec{x}, t + \Delta t) = f_i(\vec{x}, t) + \frac{\Delta t}{\tau_0} \cdot [f_i^e(\vec{x}, t) - f_i(\vec{x}, t)] \]

(1)

Here, \(f_i \) and \(f_i^e \) are functions for particle and equilibrium distributions along with direction, respectively. \(\vec{c}_i \) is discrete velocity vector for a moving pseudo-particle which that for the D2Q9 lattice model is computed as:

\[\vec{c}_i = \begin{cases} 0 & ; i = 0 \\ 1 & ; i = 1 - 4 \\ \sqrt{2} & ; i = 5 - 8 \end{cases} \]

(2)

The local equilibrium distribution functions \(f_i^e \) are given in reference [23]:

\[f_i^e = \omega_i \rho \left[1 + \frac{9 \vec{u} \cdot \vec{c}_i^2}{2 c^2} - \frac{3 \vec{u}^2}{2 c^2} + \frac{3 \vec{c}_i^2}{c^2} \right] \]

(3)

where, \(\vec{u} \) is macroscopic velocity and \(\rho \) is the fluid density. The \(\omega_i \) are weight coefficients as follow:

\[\omega_i = \begin{cases} \frac{4}{9} & ; i = 0 \\ \frac{1}{9} & ; i = 1 - 4 \\ \frac{1}{36} & ; i = 5 - 8 \end{cases} \]

(4)

Chapman–Enskog analysis can be applied to recover Navier–Stokes equation from the LB equation. As a result, the single relaxation time and viscosity \(\theta \) are related to each other as:

\[\theta = c_s^2 \Delta t(t_0 - 0.5) \]

(5)

The positivity of the kinetic viscosity requires \(t > 0.5 \). Macroscopic flow mass density and momentum variables can be calculated through the following relations, respectively [23]:

\[\rho = \sum_{i=0}^{8} f_i \]

(6)

\[\rho \vec{u} = \sum_{i=0}^{8} \vec{c}_i f_i \]

(7)

where, \(\rho \) and \(\vec{u} \) are the lattice fluid density and velocity, respectively.

The particle density distribution function given in Equation (3) is solved by two computational steps of collision and propagation. These two steps can be formulated as Equations (8) and (9), respectively [23]:

\[\tilde{f}_i(\vec{x}, t + \Delta t) = f_i(\vec{x}, t) - \frac{\Delta t}{\tau_0} \left[f_i(\vec{x}, t) - f_i^e(\vec{x}, t) \right] \]

(8)

\[f_i(\vec{x} + \vec{c}_i \Delta t, t + \Delta t) = \tilde{f}_i(\vec{x}, t + \Delta t) \]

(9)

In which, \(\tilde{f}_i \) are post-collision particle distribution functions.

The buoyancy body force plays a significant role as an external force in the present study. One of the most widely used methods for introducing the body force term in LBM is its addition to collision operator as [23]:

\[f_i(\vec{x} + \vec{c}_i \Delta t, t + \Delta t) = f_i(\vec{x}, t) - \frac{\Delta t}{\tau_0} \left[f_i(\vec{x}, t) - f_i^e(\vec{x}, t) \right] \]

(10)

\[\cdot \left[f_i(\vec{x}, t) - f_i^e(\vec{x}, t) \right] + \Delta t F_i(\vec{x}, t) \]

where \(F_i \) are the external force term in direction \(i \). Using Boussinesq approximation, it can be expressed by [23]:

\[F_i(\vec{x}, t) = 3 \omega_i \rho \beta [T(\vec{x}, t) - T_\infty] \vec{c}_i \]

(11)

where \(T_\infty \) and \(\beta \) are reference temperature and thermal expansion coefficient, respectively.

For temperature field by neglecting terms of the viscous dissipation and compressive heating effects, the evolution of temperature distribution function is considered as follows [23]:
\(g_i(\vec{x} + \vec{c}_i\Delta t, t + \Delta t) = g_i(\vec{x}, t) - \frac{\Delta t}{\tau_T}\)
(12)

\[\cdot [g_i(\vec{x}, t) - g_i(\vec{x}, t)] \]

In which \(g_i\) are temperature distribution functions of the particles in \(i\)th direction and \(\tau_T\) denotes the dimensionless relaxation time. In addition, \(g_i^\text{eq}\) are the local equilibrium energy distribution functions and for \(D2Q9\) model is written by [23]:

\[
g_{i}^{\text{eq}} = \omega_i T \left[1 + 3 \frac{\vec{c}_i \cdot \vec{u}}{C_s^2} + \frac{9}{2} \frac{(\vec{c}_i \cdot \vec{u})^2}{C_s^4} - \frac{3}{2} \frac{\vec{u}^2}{C_s^2} \right] \]

The macroscopic temperature is then defined as following [23]:

\[
T = \sum_{i=0}^{8} g_i
\]

Finally, the thermal diffusivity is rewritten as:

\[
\alpha = c_p^2 \Delta t (\tau_T - 0.5)
\]

Note that the positivity of the thermal diffusivity needs \(\tau_T > 0.5\).

Boundary conditions utilized in the computational domain are expressed in non-dimensional form by:

\[
\begin{align*}
U &= V = 0, & \theta &= 1, & \text{On the left} \\
U &= V = 0, & \theta &= 0, & \text{On the right wall} \\
U &= V = 0, & \frac{\partial \theta}{\partial y} &= 0, & \text{On the top and bottom}
\end{align*}
\]

Where nondimensional temperature can be defined by:

\[
\theta = \frac{T - \Theta_{\text{b}}}{\Delta T}
\]

(17)

Implementation of boundary conditions in the LBM is an important step in flow simulation as \(f\) and \(g\) indicating to the computational domain in the boundaries nodes are unknown. The upper and lower solid boundaries are considered as adiabatic which are represented with the bounce back boundary condition. It indicates that the incoming boundary populations towards the solid boundaries bounce back towards computational area. As an illustration at the top wall, the following conditions applied as:

\[
\begin{align*}
f_{4,n} &= f_{4,n-1}, & f_{7,n} &= f_{7,n-1}, & f_{8,n} &= f_{8,n-1} \\
\end{align*}
\]

(18)

\[
\begin{align*}
g_{4,n} &= g_{4,n-1}, & g_{7,n} &= g_{7,n-1}, & g_{8,n} &= g_{8,n-1}
\end{align*}
\]

(19)

Temperatures of vertical smooth surfaces are known \((h_{\text{ecl}}=1, \theta_{\text{Right}}=0)\), due to utilizing \(D2Q9\) scheme, the unknown functions \(f\) and \(g\) can be specified as the following conditions:

\[
\begin{align*}
f_{3,n} &= f_{4,n}, & f_{6,n} &= f_{8,n}, & f_{7,n} &= f_{5,n} \\
g_{3,n} &= -g_{4,n}, & g_{6,n} &= -g_{5,n}, & g_{7,n} &= -g_{8,n}
\end{align*}
\]

(20)

(21)

Here, subscript \(n\) stands for the node on the boundary.

Prandtl and Grashof numbers are the main control variables, which expressed as:

\[
Gr = \frac{g_s \beta \Delta T}{\theta_T^2}
\]

\[
Pr = \frac{\theta_T}{\Delta T}
\]

(22)

(23)

As described earlier, the Al₂O₃-water is supposed as a single phase media, thus addition of nanoparticles to water has significant effects on thermo-physical properties of the nanofluid. The nanofluid effective properties such \(\rho_{\text{nf}}, (C_p)_{\text{nf}}, \beta_{\text{nf}}\) are presented as:

\[
\rho_{\text{nf}} = (1 - \phi) \rho_f + \phi \rho_p
\]

\[
(p c_p)_{\text{nf}} = (p c_p)_f (1 - \phi) + (p c_p)_p \phi
\]

\[
(p \beta)_n = (p \beta)_f (1 - \phi) + (p \beta)_p \phi \beta_f
\]

(24)

(25)

(26)

where solid nanoparticles, nanofluid and base fluid are respectively defined by subscripts \(p, \text{nf}\) and \(f\).

The effective nanofluid viscosity is calculated by Equation (27) is developed by Masoumi et al. [21], which is a semi experimental model as:

\[
\mu_{\text{nf}} = \mu_f + \mu_{\text{app}}
\]

(27)

This model has the close behavior to experimental data and considers the effect of nanoparticles Brownian motion and induced surrounding fluid motion. The \(\mu_{\text{nf}}\) in Equation (27) can be obtained through the apparent viscosity, \(\mu_{\text{app}}\). It is worth noting that, \(\mu_{\text{app}}\) takes into account the influence of the temperature, mean nanoparticle size and nanoparticle concentration variables.

The results obtained through Equation (27) will be compared to the one proposed by Brinkman [24], expressed as follows:

\[
\mu_{\text{nf}} = \frac{\mu_f}{(1 - \phi)^{2.5}}
\]

(28)

The Chon et al. [22] correlation is applied for calculation \(k_{\text{nf}}\) as following:

\[
k_{\text{nf}} = 4.7 \rho_f^{0.7460} \frac{\mu_{\text{app}}^{0.7476} \text{Re}^{1.2321}}{K_b T}
\]

(29)

Here \(\text{Pr} = \frac{\mu}{\mu_{\text{app}}}\) and \(Re\) is defined by:

\[
Re = \frac{p K_b T}{3 \pi \mu^2 l_f}
\]

(30)

where, \(K_b\) is Boltzmann constant and \(T\) is the alumina nanofluid temperature, respectively. The value of mean free path \(l_f\) for water is applied as \(l_f = 0.17\) nm.

The viscosity of water is calculated with the relations presented by Fox et al. [25] which is a function of temperature as:
\[\mu_f = a \cdot 10^{b/\left(T - T_0\right)} \]
\[\text{where} \]
\[a = 2.414 \times 10^{-5} , \quad b = 247.8 , \quad c = 140 \]
The dimensionless form of used variables in this paper is as following:

\[U = \frac{u}{U_f} , \quad V = \frac{v}{\alpha U_f} , \quad X = \frac{x}{L} , \quad Y = \frac{y}{H} \]

\[\alpha = \frac{\alpha_0}{\alpha_f} , \quad \mu = \frac{\mu_0}{\mu_f} , \quad k = \frac{k_0}{k_f} . \]
The mean Nusselt numbers according to [23], is:

\[\text{Nu} = 1 + \frac{(u_c - T)}{\alpha \Delta T / H} \]

Here, \((u_c, T)\) denote the mean value of \((u_c, T)\) in whole computational domain.

4. VALIDATION

As a first step in a computational method, it is required to have results that are not dependent on grid size. To this end, as is observed in Figure 3, six mesh sizes are used and mean Nusselt number, Nu\text{avg}, at Ra = 10^4 for various grid sizes is calculated. It is found from this table that a grid independent solution is obtained with a grid size of at least 161 \times 161 points. Hence, a grid size of 161 \times 161 points is used in all computations to compromise between computational cost and accuracy. The computational convergence criterion applied in this study, is defined as:

\[\varepsilon = \frac{\sum_i^n \left| u_i^{n+1} - u_i^{n+1-1} \right|}{\sum_i^n u_i^{n+1-1}} < 10^{-8} \]

Here, \(n\) denotes the iteration number and \(\varepsilon\) is the tolerance.

The present numerical solution has been validated through published papers in the literature. The Nu\text{avg} on left wall for different Ra the square cavity is shown in Table 2 with those of other numerical investigations. Good correspondence is observed between present computations and previous works. In addition, comparison of temperature distribution in the middle of the square enclosure with those reported in the literature shows good agreement, as is observed in Figure 4.

5. RESULTS

In this part, the influences of different parameters on the hydrodynamic and thermal behavior of nanofluid in a square enclosure are investigated. As mentioned before, the range of volume concentrations is 0 ≤ φ ≤ 5% and Grashof number is Gr = 10^3. The nanoparticles used in this investigation are of type Al₂O₃ while keeping Prandtl numbers of the base fluid to 5.83 and 3.42 for temperatures of 300 °K and 325 °K, respectively.

To make better understanding of the effect of φ on flow behavior inside the cavity, typical profiles for U at the mid-section of the square enclosure for Gr=10^4, Pr=5.83 and mean diameters of 24 and 47 nm are presented in Figure 5. It is clearly seen that for both mean diameters, the maximum velocity peaks seen in the absence of Al₂O₃ nanoparticles. Furthermore, by rising the volume concentration, the magnitude of velocity components decline, where this phenomenon can be explained as the effect of increment of the effective nanofluid viscosity based on Equation (27).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10^4</td>
<td>8.714</td>
<td>4.480</td>
<td>2.238</td>
<td>1.119</td>
</tr>
<tr>
<td>10^5</td>
<td>8.799</td>
<td>4.519</td>
<td>2.243</td>
<td>1.118</td>
</tr>
<tr>
<td>10^6</td>
<td>8.826</td>
<td>4.522</td>
<td>2.245</td>
<td>1.118</td>
</tr>
<tr>
<td>10^7</td>
<td>8.976</td>
<td>4.598</td>
<td>2.254</td>
<td>1.117</td>
</tr>
</tbody>
</table>

Table 2. Comparison of the Nu\text{ave} on hot wall for a system containing pure fluid with Pr=0.7

Figure 3. Grid dependency at Ra = 10^4 and Pr=0.7

Figure 4. Comparing nondimensional temperature at the vertical mid plan (Ra=10^4, Pr = 0.7)
Moreover, when the nanoparticle’s mean diameter enhances, the influence volume concentration inside the cavity declines.

It is noted that influence of the volume concentration is less pronounced at the center part of cavity where there is a low level of velocity magnitude.

As observed in Figures 6a and 6b the increment of volume concentration causes to decrement the heat transfer rate. This can be explained as follows: when nanoparticles are added, both of μ_{nf} and k_{nf} were increased. However, the incremental effect of μ_{nf} compared to incremental effect of the k_{nf} is dominated at $\phi>0$.0. Thus, the thermal boundary layer thickness is raised, therefore mean Nusselt number decreases for all Grashof numbers. A good consistency between present result and experimental findings reported in literature [12, 13] who showed that the Nu_{avg} drops by increasing volume concentration.

![Figure 5. Variation of y-component velocity V and x-component velocity U at mid-section for Pr=5.83, Gr = 10^4, a) dp = 24 nm, b) dp = 47 nm, c) dp = 24 nm](image)

![Figure 6. Variation of the Nu_{avg} and Nusselt number ratio at different ϕ and Gr for Pr = 5.83, a) dp = 24 nm, b) dp = 47 nm, c) dp = 24 nm](image)

It can be interesting to note that Nu_{avg} drops significantly for Gr=10^3, whereas the trend slows at other Grashof number (see Figure 6c).

To study latter effect on the nanoparticles’ size has to fluctuate among 24 to 100 nm and the Prandtl number and volume concentration are kept constant at 5.83 and 0.05, respectively. The vertical velocity profile at the midsection is affected by different nanoparticles’ mean diameter is observed in Figure 7. Where, the nanoparticles’ mean diameter increment leads to increase the maximum velocity profile and the heat transfer. This behavior is similar to volume concentration reduction. In other words, declining of nanoparticles’ mean diameter and increasing of the volume concentration have the same effect. The dominate influence of dynamics’ viscosity on the characteristic of heat transfer nanofluid is a major cause of this phenomena.
Figure 8 shows Nusselt number distribution for different volume concentration at $Pr = 5.83$, nanoparticles’ mean diameters $dp = 24, 47, 100$ nm and Grashof numbers of 10^3 and 10^4.

The mean Nusselt number illustrates that heat transfer increases by rising the nanoparticles’ mean diameters for various Grashof number and volume concentration, where a similar manner observed by Hwang et al. [14]. In addition, it is obvious that the rate of this decrease is different for various values of nanoparticles’ mean diameter, where this reduction trend slows down with the growth of mean diameter.

Streamlines and isotherms for nanofluids and base fluid at $Gr=10^3$ and $Gr=10^5$, for $\phi=0.05$ and $Pr=5.83$, respectively are presented in Figure 9.

Here streamlines patterns described by a small central vortex for $Gr=10^3$ and, the core region of the cavity tends to break up into two recirculation zones for $Gr=10^5$. For $Gr=10^5$ the value of the absolute circulation strength increases as the nanoparticles mean diameter increases. For example, $|\psi|_{max}=2.378$ for 24 nm, whereas it is 3.964 for $dp = 100$ nm (Figure 9). The reason for this is a drop in the nanoparticles’ mean diameter and y-component velocity. A similar trend is observed for $Gr=10^5$. However, the variation rate for $Gr=10^5$ is low.

Moreover, for a specific nanoparticles’ mean diameter the isotherm diagrams are similar and the variation of Grashof number has no significant effect on them.

The effects of nanofluid temperature are given in term of Prandtl number. The comparing of the isotherms and streamlines contours for Prandtl numbers 5.83 and 3.42 at the $dp = 24, 47$ and 100 nm are shown in Figure 10.

The value of the absolute circulation strength rises as the Pr increases. This reason of this increment is simultaneous changes of the dynamic viscosity and the thermal conductivity, which have temperature dependence. Increasing of Pr has the same effect on streamline and isotherms contours at different nanoparticles’ mean diameter, as is observed in Figure 10.

Figure 11 shows that Nusselt number is strongly affected due to changing the Pr and it enhances with a rise of Pr for different values of nanoparticles’ mean diameter.

Figure 12 presents comprising of various correlations for prediction of μ_{nf} and k_{nf}. The dynamic viscosity ratios are calculated in accordance with Masoumi et al. [21] and Brinkman [24] models as functions of volume concentration ϕ for Prandtl number 5.83 and various nanoparticles’ mean diameter. At Figure 12, as the volume fraction augments, difference between the results obtained from Equations (18) and (19) increases, especially at small nanoparticles’ mean diameter. For example, for the mean diameter of 24 nm and $\phi=0.01$ to 0.05, the viscosity difference is 11.49% and 54.15 %, whereas for mean diameter of 47 nm and $\phi=0$ to 0.04 it’s 2.41% and 10.8%, respectively. In addition, there is a variation in the thermal conductivity
for different temperatures and the nanoparticles’ mean diameter, which is also important in this regards as observed in Figures 12b and 12c. Moreover, the Nusselt number is affected by different dynamic viscosity models as well. As an example, for diameter is increased from 24 to 47 nm, the difference for the Nusselt number is 0.64%. According to Brinkman [24] model and this difference is thoroughly sensitive in Chon et al. [22] model to different nanoparticles’ mean diameter. However, for the last case, the difference in Nusselt number is 7.82% according to Masoumi et al. [21] model. It is obvious that that Brinkman [24] model has no sensitivity to the nanoparticles’ mean diameter. This is due to the Brinkman [24] model does not depend on the nanoparticles’ mean diameter. While, the Masoumi et al. [21] model considers the influences of particle density, particles size and temperature. Hence this model can be predicted a more realistic behavior of nanofluid for different parameters.

Figure 9. Comparison of the streamlines contours (left) and isotherms contours (right) for pure water (solid line) and nanofluid with $\varphi = 0.05$ (dashed line) at Pr=5.83 a) dp=24 nm, Gr=103, b) dp=100 nm, Gr=103, c) dp=24 nm, Gr=105, d) dp=100 nm, Gr=105
Figure 10. Comparison of the streamlines contours (left) and isotherms contours (right) for nanofluid at Pr = 5.83 (—) and nanofluid at Pr = 3.42 (---) for φ = 0.05, Gr = 10^4, a) dp = 24 nm, b) dp = 47 nm, c) dp = 100 nm

Figure 11. Variation of Nu with mean nanoparticle diameter for nanofluid with φ = 0.04 and Gr = 10^4

Figure 1. Comparison of the correlations used for the ratio dynamic viscosity and ratio thermal conductivity a,b) Pr = 5.83, c) Pr = 3.42
6. CONCLUSIONS

The lattice Boltzmann method is adapted to investigation of the influences of nanoparticles’ means diameter and temperature for the nanofluid free convection in a square cavity. This numerical analysis was performed for various values of parameters with results summarized as follows:

Increasing the nanoparticles have a substantially impact on the velocity and temperature of nanofluid. By adding nanoparticles, the vertical velocity decreases in the areas near the left wall of the enclosure while it increases in the neighborhood of cold wall in the enclosure. The rising of solid volume fraction reduces the Nusselt number. A similar behavior is found for decreasing the nanoparticles’ mean diameter with addition of nanoparticles as well. A similar behavior is found for decreasing the nanoparticles’ mean diameter with addition of nanoparticles as well. The same effect is observed through a decrease of nanoparticles’ mean diameter and through an increase in nanoparticles concentration. It is found that the Nu_avg and absolute circulation strength increase with rise of the nanoparticles’ mean diameter. It is obvious that the Nu_avg varies noticeable for different Prandtl numbers. For the Nu_avg, the variation of Prandtl number through the variation of the nanoparticles’ mean diameter has no significant affected.

7. REFERENCES

Assessment of Particle-size and Temperature Effect of Nanofluid on Heat Transfer Adopting Lattice Boltzmann Model

A. Shahriaria, N. Jahantigha, F. Rakanib

a Department of Mechanical Engineering, University of Zabol, Zabol, Iran
b Department of Computer Sciences, University of Sistan & Baluchestan, Zahedan, Iran

\textbf{Paper Info}

\textbf{Paper history:}
Received 18 November 2017
Received in revised form 08 December 2017
Accepted 05 February 2018

\textbf{Keywords:}
Nanoparticles Mean Diameter
Natural Convection
Nanofluid
Lattice Boltzmann Model

چکیده
هدف مطالعه حاضر بررسی اثرات قطر متوسط نانوذرات و دما نانوسیالآبی آلومینیم (Al2O3) بر روی میدان سرعت و توزیع دما با استفاده از روش شبکه بولتزمن است. دیواره‌های سمت راست و چپ محظف به ترتیب در دما (\textbf{Gr}=10^4, 10^5) گرم و سرد قرار دارد در حالی که دیواره بالا و پایین هر دو صاف هستند. اثر پارامترهایی نظیر عدد گراشف (\textbf{Gr}=5, 10^4, 10^5), عدد پرانتل (\textbf{Pr}=3.42, 5.83), کسر حجمی نانوذرات (\textbf{q}=0, 0.01, 0.03, 0.05) و قطر متوسط نانوذرات (\textbf{dp}=24, 47, 100 nm) بر روی میدان جریان و توزیع دما تحقیق شده است. می‌توان نتیجه گرفت که افزایش عدد گراشف، کسر حجمی نانوذرات و قطر متوسط نانوذرات باعث افزایش شدید حرارت می‌شود. همچنین، با افزایش عدد پرانتل اثر مثبتی بر روی عدد ناسلت دارد. بهره‌مندی پارامترهای مذکور باعث افزایش بهره‌مندی محیطی شده می‌شود.