Interpreting the CO2 adsorption on functionalized organic group of IRMOF-1: A B3LYP DFT based study

Authors

1 Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

2 Membrane Research Group, Nanotechnology Institute, Babol Noshirvani University of Technology, Shariati Ave.,Babol, Iran

3 Department of Chemical Engineering, Mazandaran University of Science and Technology, Mazandaran, Iran

4 Department of chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

Abstract

Density Functional Theory (DFT) calculations techniques in terms of energetic and electronics properties are used to study CO2 adsorption in NH2-, OH-, COOH-, Br- and Cl-functionalized IRMOF-1. Geometry optimization, density of states (DOS), and energy analyses were performed to investigate the adsorption phenomenon. First, we examined the geometrical as well as the electronic structures of functionalized IRMOF-1 (actually functionalized H2BDC as representative section) before and after interaction with CO2, in order to compare and comprehend the relationship between their chemical structure and their related properties. The binding properties have been calculated and analyzed theoretically for pristine H2BDC and X-H2BDC as well as their complex forms with CO2 molecule in terms of binding energies, band structures, total density of states, and Mulliken charges. The finding showed larger interaction energy in COOH-H2BDC (-22.3125 kJ/mol) and somewhat in OH-H2BDC (-12.8625 kJ/mol) and NH2-H2BDC (-12.6000 kJ/mol) complexes compared to less interaction energies in Br-H2BDC (-10.2375 kJ/mol) and Cl-H2BDC (-6.0375 kJ/mol) complexes. The type of interaction between CO2 with pristine H2BDC and X-H2BDC was studied with understanding the HOMO and LUMO energies.

Keywords


1.     Albo, J., Luis, P. and Irabien, A., "Carbon dioxide capture from flue gases using a cross-flow membrane contactor and the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate", Industrial & Engineering Chemistry Research,  Vol. 49, No. 21, (2010), 11045-11051.
2.     Romano, M.C., Chiesa, P. and Lozza, G., "Pre-combustion CO2 capture from natural gas power plants, with ATR and MDEA processes", International Journal of Greenhouse Gas Control,  Vol. 4, No. 5, (2010), 785-797.
3.     Rao, A.B. and Rubin, E.S., "A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control", Environmental science & technology,  Vol. 36, No. 20, (2002), 4467-4475.
4.     Hedenus, F., Karlsson, S., Azar, C. and Sprei, F., "Cost-effective energy carriers for transport–the role of the energy supply system in a carbon-constrained world", International Journal of Hydrogen Energy,  Vol. 35, No. 10, (2010), 4638-4651.
5.     Littel, R., Versteeg, G. and Van Swaaij, W.P.M., "Physical absorption into non-aqueous solutions in a stirred cell reactor", Chemical Engineering Science,  Vol. 46, No. 12, (1991), 3308-3313.
6.     Bishnoi, S. and Rochelle, G.T., "Absorption of carbon dioxide into aqueous piperazine: Reaction kinetics, mass transfer and solubility", Chemical Engineering Science,  Vol. 55, No. 22, (2000), 5531-5543.
7.     Rochelle, G.T., "Amine scrubbing for CO2 capture", Science,  Vol. 325, No. 5948, (2009), 1652-1654.
8.     Park, S.-W., Choi, B.-S. and Lee, J.-W., "Chemical absorption of carbon dioxide with triethanolamine in non-aqueous solutions", Korean Journal of Chemical Engineering,  Vol. 23, No. 1, (2006), 138-143.
9.     Park, S.W., Choi, B.S. and Lee, J.W., "Chemical absorption of carbon dioxide into aqueous colloidal silica solution with diethanolamine", Separation Science and Technology,  Vol. 41, No. 14, (2006), 3265-3278.
10.   Harlick, P.J. and Tezel, F.H., "An experimental adsorbent screening study for CO2 removal from N2", Microporous and Mesoporous Materials,  Vol. 76, No. 1-3, (2004), 71-79.
11.   Arjmandi, M. and Pakizeh, M., "An experimental study of h2 and CO2 adsorption behavior of C-MOF-5 and T-MOF-5: A complementary study", Brazilian Journal of Chemical Engineering,  Vol. 33, No. 1, (2016), 225-233.
12.   Chaffee, A.L., Knowles, G.P., Liang, Z., Zhang, J., Xiao, P. and Webley, P.A., " CO2 capture by adsorption: Materials and process development", International Journal of Greenhouse Gas Control,  Vol. 1, No. 1, (2007), 11-18.
13.   Belmabkhout, Y. and Sayari, A., "Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions", Adsorption,  Vol. 15, No. 3, (2009), 318-328.
14.   Eskandari, A., Jahangiri, M. and Anbia, M., "Effect of particle size of nax zeoilite on adsorption of CO2/CH4", International Journal of Engineering, Transactions A: Basics,  Vol. 29 No. 1, (2016), 1-7.
15.   Anbia, M. and Salehi, S., "Investigation of carbon dioxide adsorption on amino-functionalized mesoporous silica", International Journal of Engineering, Transactions C: Aspects,  Vol. 28, No. 6, (2015), 848-854.
16.   Powell, C.E. and Qiao, G.G., "Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases", Journal of Membrane Science,  Vol. 279, No. 1-2, (2006), 1-49.
17.   Arjmandi, M. and Pakizeh, M., "Mixed matrix membranes incorporated with cubic-MOF-5 for improved polyetherimide gas separation membranes: Theory and experiment", Journal of industrial and engineering chemistry,  Vol. 20, No. 5, (2014), 3857-3868.
18.   Arjmandi, M., Pakizeh, M. and Pirouzram, O., "The role of tetragonal-metal-organic framework-5 loadings with extra zno molecule on the gas separation performance of mixed matrix membrane", Korean Journal of Chemical Engineering,  Vol. 32, No. 6, (2015), 1178-1187.
19.   Li, S., Martinek, J.G., Falconer, J.L., Noble, R.D. and Gardner, T.Q., "High-pressure CO2/CH4 separation using sapo-34 membranes", Industrial & Engineering Chemistry Research,  Vol. 44, No. 9, (2005), 3220-3228.
20.   Shimekit, B., Mukhtar, H., Ahmad, F. and Maitra, S., "Ceramic membranes for the separation of carbon dioxide—a review", Transactions of the Indian Ceramic Society,  Vol. 68, No. 3, (2009), 115-138.
21.   D'Alessandro, D.M., Smit, B. and Long, J.R., "Carbon dioxide capture: Prospects for new materials", Angewandte Chemie International Edition,  Vol. 49, No. 35, (2010), 6058-6082.
22.   Wang, B., Côté, A.P., Furukawa, H., O’Keeffe, M. and Yaghi, O.M., "Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs", Nature,  Vol. 453, No. 7192, (2008), 207.
23.   Caskey, S.R., Wong-Foy, A.G. and Matzger, A.J., "Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores", Journal of the American Chemical Society,  Vol. 130, No. 33, (2008), 10870-10871.
24.   Llewellyn, P.L., Bourrelly, S., Serre, C., Vimont, A., Daturi, M., Hamon, L., De Weireld, G., Chang, J.-S., Hong, D.-Y. and Kyu Hwang, Y., "High uptakes of CO2 and CH4 in mesoporous metal organic frameworks mil-100 and mil-101", Langmuir,  Vol. 24, No. 14, (2008), 7245-7250.
25.   Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.Ö., Snurr, R.Q., O’Keeffe, M. and Kim, J., "Ultrahigh porosity in metal-organic frameworks", Science,  Vol. 329, No. 5990, (2010), 424-428.
26.   Rowsell, J.L., Spencer, E.C., Eckert, J., Howard, J.A. and Yaghi, O.M., "Gas adsorption sites in a large-pore metal-organic framework", Science,  Vol. 309, No. 5739, (2005), 1350-1354.
27.   Llabrés i Xamena, F.X., Corma, A. and Garcia, H., "Applications for metal− organic frameworks (MOFs) as quantum dot semiconductors", The Journal of Physical Chemistry C,  Vol. 111, No. 1, (2007), 80-85.
28.   Li, H., Eddaoudi, M., O'Keeffe, M. and Yaghi, O.M., "Design and synthesis of an exceptionally stable and highly porous metal-organic framework", Nature,  Vol. 402, No. 6759, (1999), 276.
29.   Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'keeffe, M. and Yaghi, O.M., "Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage", Science,  Vol. 295, No. 5554, (2002), 469-472.
30.   Sarmiento-Perez, R.A., Rodriguez-Albelo, L.M., Gomez, A., Autie-Perez, M., Lewis, D.W. and Ruiz-Salvador, A.R., "Surprising role of the bdc organic ligand in the adsorption of CO2 by MOF-5", Microporous and Mesoporous Materials,  Vol. 163, (2012), 186-191.
31.   Jhon, Y.H., Cho, M., Jeon, H.R., Park, I., Chang, R., Rowsell, J.L. and Kim, J., "Simulations of methane adsorption and diffusion within alkoxy-functionalized IRMOFs exhibiting severely disordered crystal structures", The Journal of Physical Chemistry C,  Vol. 111, No. 44, (2007), 16618-16625.
32.   Sagara, T., Klassen, J., Ortony, J. and Ganz, E., "Binding energies of hydrogen molecules to isoreticular metal-organic framework materials", The Journal of Chemical Physics,  Vol. 123, No. 1, (2005), 014701.
33.   Karra, J.R. and Walton, K.S., "Molecular simulations and experimental studies of CO2, CO, and N2 adsorption in metal− organic frameworks", The Journal of Physical Chemistry C,  Vol. 114, No. 37, (2010), 15735-15740.
34.   Peng, S., Cho, K., Qi, P. and Dai, H., "Ab initio study of cnt no2 gas sensor", Chemical Physics Letters,  Vol. 387, No. 4-6, (2004), 271-276.
35.   Wang, G.-C., Jiang, L., Morikawa, Y., Nakamura, J., Cai, Z.-S., Pan, Y.-M. and Zhao, X.-Z., "Cluster and periodic dft calculations of adsorption and activation of CO2 on the Cu (hkl) surfaces", Surface Science,  Vol. 570, No. 3, (2004), 205-217.
36.   Cabrera-Sanfelix, P., "Adsorption and reactivity of CO2 on defective graphene sheets", The Journal of Physical Chemistry A,  Vol. 113, No. 2, (2008), 493-498.
37.   Walton, K.S., Millward, A.R., Dubbeldam, D., Frost, H., Low, J.J., Yaghi, O.M. and Snurr, R.Q., "Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks", Journal of the American Chemical Society,  Vol. 130, No. 2, (2008), 406-407.
38.   Dubbeldam, D., Frost, H., Walton, K.S. and Snurr, R.Q., "Molecular simulation of adsorption sites of light gases in the metal-organic framework IRMOF-1", Fluid Phase Equilibria,  Vol. 261, No. 1-2, (2007), 152-161.
39.   Martín-Calvo, A., García-Pérez, E., Castillo, J.M. and Calero, S., "Molecular simulations for adsorption and separation of natural gas in IRMOF-1 and Cu-BTC metal-organic frameworks", Physical Chemistry Chemical Physics,  Vol. 10, No. 47, (2008), 7085-7091.
40.   De Toni, M., Pullumbi, P., Coudert, F.-X. and Fuchs, A.H., "Understanding the effect of confinement on the liquid− gas transition: A study of adsorption isotherms in a family of metal− organic frameworks", The Journal of Physical Chemistry C,  Vol. 114, No. 49, (2010), 21631-21637.
 41.   Fairen-Jimenez, D., Seaton, N.A. and Düren, T., "Unusual adsorption behavior on metal− organic frameworks", Langmuir,  Vol. 26, No. 18, (2010), 14694-14699.
42.   Hu, Y.H. and Zhang, L., "Amorphization of metal-organic framework MOF-5 at unusually low applied pressure", Physical Review B,  Vol. 81, No. 17, (2010), 174103.
43.   Yang, L.-M., Vajeeston, P., Ravindran, P., Fjellvåg, H. and Tilset, M., "Theoretical investigations on the chemical bonding, electronic structure, and optical properties of the metal− organic framework mof-5", Inorganic Chemistry,  Vol. 49, No. 22, (2010), 10283-10290.
44.   Petrova, T., Michalkova, A. and Leszczynski, J., "Adsorption of RDX and TATP on IRMOF-1: An ab initio study", Structural Chemistry,  Vol. 21, No. 2, (2010), 391-404.
45.   Foresman, J., Ortiz, J., Cioslowski, J. and Fox, D., "Gaussian 09, revision d. 01; gaussian, inc", Wallingford, CT, (2009).
46.   Koopmans, T., "Ordering of wave functions and eigenenergies to the individual electrons of an atom", Physica,  Vol. 1, (1933), 104-113.
47.   Mulliken, R.S., "Electronic population analysis on lcao–mo molecular wave functions. I", The Journal of Chemical Physics,  Vol. 23, No. 10, (1955), 1833-1840.
48.   Lotfi, R. and Saboohi, Y., "Effect of metal doping, boron substitution and functional groups on hydrogen adsorption of MOF-5: A dft-d study", Computational and Theoretical Chemistry,  Vol. 1044, (2014), 36-43.
49.   Samadizadeh, M., Rastegar, S.F. and Peyghan, A.A., "F−, cl−, li+ and na+ adsorption on aln nanotube surface: A dft study", Physica E: Low-dimensional Systems and Nanostructures,  Vol. 69, (2015), 75-80.
50.   Yan, M.-K., Zheng, C., Yin, J., An, Z.-F., Chen, R.-F., Feng, X.-M., Song, J., Fan, Q.-L. and Huang, W., "Theoretical study of organic molecules containing n or s atoms as receptors for Hg (ii) fluorescent sensors", Synthetic Metals,  Vol. 162, No. 7-8, (2012), 641-649.
51.   Hudson, G.A., Cheng, L., Yu, J., Yan, Y., Dyer, D.J., McCarroll, M.E. and Wang, L., "Computational studies on response and binding selectivity of fluorescence sensors", The Journal of Physical Chemistry B,  Vol. 114, No. 2, (2009), 870-876.
52.   Soltani, A., Taghartapeh, M.R., Mighani, H., Pahlevani, A.A. and Mashkoor, R., "A first-principles study of the scn− chemisorption on the surface of AlN, AlP, and BP nanotubes", Applied Surface Science,  Vol. 259, (2012), 637-642.