CO2 Selective Carbon Tubular Membrane: The Effect of Stabilization Temperature on BTDA-TDI/MDI P84 Co-polyimide

Authors

1 Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia

2 School of Chemical and Energy Engineering (FCEE), Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia

3 Chemical Engineering Department, Universiti Teknologi Petronas (UTP), 32610 Seri Iskandar, Malaysia

Abstract

Membranes offer remarkable attributes such as possessing small equipment footprints, having high efficiency and are environmentally friendly, with carbon membranes progressively investigated for gas separation applications. In this study, carbon tubular membranes for CO2 separationare prepared via the dip-coating method with P84 co-polyimide as the carbon precursor. The prepared membranes were characterized using Thermogravimetric Analysis (TGA), pore structure analysis Brunauer-Emmett-Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and pure gas permeation system. The permeation properties of the carbon membranes are measured and analyzed by using CO2, CH4 and N2 gases. The P84-based carbon tubular membrane stabilized at 300°C and featured excellent permeation properties with permeance range of 2.97±2.18, 3.12±4.32 and 206.09±3.24 GPU for CH4, N2 and CO2 gases, respectively. This membrane exhibited the highest CO2/CH4 and CO2/N2 selectivity of 69.48±1.83 and 65.97±2.87, respectively.

Keywords


1. Adewole, J. K., Ahmad, A. L., Ismail, S. and Leo, C. P. “Current    challenges in membrane separation of CO2 from natural gas: A review”, International Journal of Greenhouse Gas Control, Vol. 17, (2013), 46-65.
2. Zhang, Y., Sunarso, J., Liu, S. and Wang, R. “Current status and development of membranes for CO2/CH4 separation: A review”, International Journal of Greenhouse Gas Control, Vol. 12, (2013), 84-107.
3. Sridhar, S., Smitha, B. and Aminabhavi, T. M. “Separation of Carbon Dioxide from Natural Gas Mixtures through Polymeric Membranes—A Review”. Separation & Purification Review, Vol. 36, (2007), 113-174.
4. Xiao, Y., Low, B. T., Hosseini, S. S., Chung, T. S. and Paul, D. R. “The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review”, Progress in Polymer Science, Vol. 34,  (2009), 561-580.
5. Saufi, S. M. and Ismail, A. F., “Fabrication of carbon membranes for gas separation––A review”, Carbon, Vol. 42, (2004), 241-259.
6. Peng, N., Widjojo, N., Sukitpaneenit, P., Teoh, M. M., Lipscomb, G. G., Chung, T.-S. and Lai, J.-Y. “Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future”. Progress in Polymer Science, Vol. 37, (2012), 1401-1424.
7. Wan Salleh, W. N., and  Ismail, A. F., “Effect of stabilization temperature on gas permeation properties of carbon hollow fiber membrane”. Journal Applied Polymer Science, Vol. 127, (2013), 2840-2846.
8. Mahdyarfar, M., Mohammadi, T. and Mohajeri, A., “Gas separation performance of carbon materials produced from phenolic resin: Effects of carbonization temperature and ozone post treatment”. New Carbon materials, Vol. 28, (2013), 39-46.
9. Chua, M. L., Xiao, Y. C. and Chung, T.-S., “Modifying the molecular structure and gas separation performance of thermally labile polyimide-based membranes for enhanced natural gas purification”. Chemical Engineering Science, Vol. 104, (2013), 1056-1064.
10. Xing, D. Y., Chan, S. Y. and Chung, T.-S., “Fabrication of porous and interconnected PBI/P84 ultrafiltration membranes using [EMIM]OAc as the green solvent”. Chemical Engineering Science, Vol. 87, (2013), 194-203.
11. Ren, J. and Li, Z., “Development of asymmetric BTDA-TDI/MDI (P84) copolyimide flat sheet and hollow fiber membranes for ultrafiltration: Morphology transition and membrane performance”. Desalination, Vol.  (2012), 285, 336-344.
12. Mangindaan, D. W., Woon, N. M., Shi, G. M. and Chung, T. S. “P84 polyimide membranes modified by a tripodal amine for enhanced pervaporation dehydration of acetone”. Chemical Engineering Science, Vol. 122, (2015), 14-23.
13. Choi, S.-H., Jansen, J. C., Tasselli, F., Barbieri, G. and Drioli, E. “In-line formation of chemically cross-linked P84® co-polyimide hollow fibre membranes for H2/CO2 separation”. Separation and Purification Technology, Vol. 76, (2010), 132-139.
14. Lua, A. C. and Shen, Y. “Preparation and characterization of asymmetric membranes based on nonsolvent/NMP/P84 for gas separation”, Journal of Membrane Science, Vol. 429, (2013), 155-167.
15. Ismail, A. F. and David, L. I. B. “A review on the latest development of carbon membranes for gas separation”. Journal of Membrane Science, Vol.193, (2001), 1-18.
16. Li, L., Qi, W.-B., Wang, H., Zhang, P.-P., Sun, M.-Y., Wang, T.-H., Li, J.-X. and Cao, Y.-M. “Pyrolysis of polyimide membranes from the same dianhydride monomer and different diamines to form carbon membranes”. Carbon, Vol. 98,(2016),  735. DOI: 10.1016/j.carbon.2015.10.036
17. Salleh, W. N. W. and Ismail, A. F. “Effect of Stabilization Condition on PEI/PVP-Based Carbon Hollow Fiber Membranes Properties”. Separation and  Science Technology, Vol. 48, (2013), 1030-1039.
18. Cipriani, E., Zanetti, M., Bracco, P., Brunella, V., Luda, M. P. and Costa, L. “Crosslinking and carbonization processes in PAN films and nanofibers”. Polymer Degradation and  Stability, Vol. 123,(2016), 178-188.
19. Barbosa-Coutinho, E., Salim, V. M. M. anand Piacsek Borges, C.,“Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide”. Carbon, Vol. 41, (2003), 1707-1714.
20. Hameed, N., Sharp, J., Nunna, S., Creighton, C., Magniez, K., Jyotishkumar, P., Salim, N. V. and Fox, B., “Structural transformation of polyacrylonitrile fibers during stabilization and low temperature carbonization”. Polymer Degradation and Stability, Vol. 128, (2016), 39-45.
21. Wang, C., Yu, J., Hu, X.-J. and Huang, Y.,“A review of the development of porous substrate-supported carbon membranes”. Carbon, Vol. 85, (2015), 445. DOI: 10.1016/j.carbon.2014.12.072
22. Vinoth Kumar, R., Kumar Ghoshal, A. and Pugazhenthi, G. “Elaboration of novel tubular ceramic membrane from inexpensive raw materials by extrusion method and its performance in microfiltration of synthetic oily wastewater treatment”, Journal of Membrane Science, Vol. 490, (2015), 92-102.
23. Mahdyarfar, M., Mohammadi, T. and Mohajeri, A. “Defect formation and prevention during the preparation of supported carbon membranes”. New Carbon materials, Vol. 28, (2013), 369-377.
24. Sazali, N., Salleh, W. N. W., Md Nordin, N. A. H., Harun, Z.and  Ismail, A. F. “Matrimid-based carbon tubular membranes: The effect of the polymer composition”. Journal of Applied Polymer Science, Vol. 132, (2015), 1345. DOI: 10.1002/app.42394
 
 
25. Sazali, N., Salleh, W. N. W., Nordin, N. A. H. M. and Ismail, A. F. Matrimid-based carbon tubular membrane: Effect of carbonization environment. Journal of  Industrial Engineering Chemistry, Vol. 32, (2015), 167-171.
26. Lin, H. and Yavari, M. “Upper bound of polymeric membranes for mixed-gas CO2/CH4 separations. Journal of Membrane Science., Vol. 475, (2015), 101-109.
27. Matteucci, S., Kusuma, V. A., Sanders, D., Swinnea, S. and Freeman, B. D. “Gas transport in TiO2 nanoparticle-filled poly(1-trimethylsilyl-1-propyne”, Journal of Membrane Science., Vol. 307, (2008), 196-217.
28. Mangindaan, D. W., Min Shi, G. and Chung, T.-S. “Pervaporation dehydration of acetone using P84 co-polyimide flat sheet membranes modified by vapor phase crosslinking”. Journal of Membrane Science., Vol. 458, (2014), 76-85.
29. Shen, Y. and Lua, A. C. “Structural and transport properties of BTDA-TDI/MDI co-polyimide (P84)–silica nanocomposite membranes for gas separation”. Chemical Engineering Journal, Vol. 188, (2012), 199-209.
30. Hosseini, S. S. and Chung, T. S. “Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification”. Journal of Membrane Science., Vol. 328, (2009), 174-185.
31. Yang, Q., Chung, T.-S., Xiao, Y. and Wang, K. “The development of chemically modified P84 Co-polyimide membranes as supported liquid membrane matrix for Cu(II) removal with prolonged stability”. Chemical Engineering Science, Vol. 62, (2007), 1721-1729.
32. Fuertes, A. B. & Centeno, T. A. “Preparation of supported carbon molecular sieve membranes”. Carbon, Vol. 37, (1999), 679-684.
33. Alghunaimi, F., Ghanem, B., Alaslai, N., Swaidan, R., Litwiller, E. & Pinnau, I. “Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides”. Journal of Membrane Science, Vol. Vol. 490, (2015), 321-327.
34. Zhang, Y.-G. and Lu, M.-C. “Effect of impregnation on the pore structure of a tubular carbon membrane”. New carbon materials, Vol. 25, (2010), 475-478.
35. Weng, T.-H., Tseng, H.-H. and Wey, M.-Y. “Fabrication and characterization of poly(phenylene oxide)/SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation”. International Journal of Hydrogen Energy, Vol. 35, (2010), 6971-6983.
36. Zhang, K. and Way, J. D. “Optimizing the synthesis of composite polyvinylidene dichloride-based selective surface flow carbon membranes for gas separation”. Journal of Membrane Science., Vol. 369, (2011), 243-249.
37. Villarroel-Rocha, J., Barrera, D. and Sapag, K. “Introducing a self-consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination”, Micropores and Mesopores Materials, Vol. 200, (2014), 68-78.
38. Close, J. J., Farmer, K., Moganty, S. S. and Baltus, R. E. “CO2/N2 separations using nanoporous alumina-supported ionic liquid membranes: Effect of the support on separation performance”. Journal of membrane Science, Vol. 390–391, (2012), 201-210.
39. Shao, P. and Huang, R. Y. M. “Polymeric membrane pervaporation”. Journal of Membrane Science, Vol.287, (2007) 162-179.