1. INTRODUCTION

Due to increasing the applications of nanocomposites reinforced with carbon based nanostructures including carbon nanofillers, need for accurate and effective analysis of behavior of such nanostructures has been increased in recent years. An efficient theory was introduced by Eringen [1]. Recently, some research works have been reported excellent solution methods using the nonlocal theory for nanostructure studies. For instance, Karličić et al. [2] used the nonlocal theory to examine the influence of in-plane magnetic field on the viscoelastic orthotropic multi-nanoplate system (VOMNPS) embedded in a viscoelastic medium. Pradhan and Phadikar [3] studied nonlocal elasticity theory for vibration of nanoplates. They employed both classical and FSDT of plates to analyze the vibration of single and double layer graphene sheets.

On the other hand, because of magnificent mechanical, chemical, thermal and electrical material properties of nanosheets including graphene and also it’s widely uses in several advanced industries; lots of researchers have recently paid attention on nanosheets [4]. Shariyat et al. [5] employed a molecular mechanics approach to investigate the mechanical properties of nanosheet using a proper unit cell. Montazeri and Rafii-Tabar [6] employed different kinds of method to compute the elastic constants of a polymeric nanocomposite embedded with graphene sheets. Kitipornchai et al. [7] examined the vibration and the buckling of FGM beams reinforced by graphene platelets. Jalali et al. [8] examined the out-of-plane defects on vibrational analysis of single layered graphene sheets. Nazemnezhad [9] used nonlocal

Timoshenko beam model and molecular dynamics simulations to investigate the free vibration of cantilever multi-layer graphene nanoribbons. Arani et al. [10] used the third order shear deformation theory to study the
instability of axially moving single-layered graphene sheet. Accordingly, experimental and theoretical efforts have been carried out in order to study various kinds of effects on defected graphene sheets, in recent years. Allahyari and Fadaee [11] presented the vibration of circular double-layer graphene sheets with defect and surface effects. They employed an analytical investigation to compute the natural frequencies of nanoplate. So it is important to focus on vibrational behavior of nanocomposites which the graphene nanosheets are dispersed in them. For example, Yao et al. [12] studied about homogeneous dispersion of graphene nanosheets in epoxy. Ragavan et al. [13] developed Graphene magnetic nanocomposite as a nano-adsorbent. Gharib et al. [14] presented the vibrational behavior of polymeric nanocomposite. Mohammadmehr et al. [15] developed the free vibration of nanocomposite plate reinforced by functionally graded single-walled carbon nanotube embedded in viscoelastic foundation. While quite a few investigations on vibration characteristics of graphene reinforced polymer nanocomposite plates have been reported; there seems to be a void in studies concerning defected graphene nanosheets. Based on Eringen nonlocal elasticity theory, the constitutive equations by employing transformed orthotropic stiffness components were obtained. To estimate the mechanical properties of nanocomposite plate reinforced by graphene sheets, a new modified Halpin–Tsai model was used. In that a special procedure was employed to obtain the graphene efficiency parameters according to Halpin–Tsai model and the MD simulations.

2. THEORETICAL FORMULATION AND DEVELOPING ANALYTICAL SOLUTION

A rectangular nanocomposite reinforced by graphene sheet with length "a", width "b" and uniform thickness "h" is depicted in Figure 1. The origin of the considered coordinate system is placed at one end of the nanoplate on the mid-plane surface. The (x, y) are in the length and width directions of the nanocomposite, respectively. The z is placed in the direction of the outward normal to the mid-plane surface. The differential constitutive equation of Eringen nonlocal theory [16] can be presented by the following form:

\[(1 - \mu \nabla^2) S^{\alpha} = S^\alpha\]

where \(\nabla^2\) is the Laplacian operator, \(\mu\) is the nonlocal parameter or small scale coefficient, \(S^{\alpha}\), \(S^\alpha\) are the nonlocal and the local stress tensor, respectively.

Figure 1. Schematic of a rectangular nanocomposite reinforced by pristine graphene sheet

According to the classical plate theory, displacement field for a rectangular single layer plate can be considered as follows:

\[u(x, y, z, t) = u_0(x, y, t) - z \left(\frac{\partial w}{\partial x} \right)\]
\[v(x, y, z, t) = v_0(x, y, t) - z \left(\frac{\partial w}{\partial y} \right)\]
\[w(x, y, z, t) = w_0(x, y, t)\]

(2)

Here \((u_0, v_0, w_0)\) are called the midplane displacement and \((u, v, w)\) are the displacements along x, y and z directions, respectively. Using the strain-displacement relations, the only nonzero strains are given by following expressions:

\[\varepsilon_{xx} = \frac{\partial u_0}{\partial x} - z \left(\frac{\partial v_0}{\partial x} \right)\]
\[\varepsilon_{yy} = \frac{\partial v_0}{\partial y} - z \left(\frac{\partial u_0}{\partial y} \right)\]
\[\varepsilon_{zz} = \frac{1}{2} \left(\frac{\partial w_0}{\partial x} + \frac{\partial v_0}{\partial y} - 2z \frac{\partial w_0}{\partial z} \right)\]

(3)

According to Eringen nonlocal theory and using orthotropic constitutive equations of lamina, it can be represented as follows:

\[(1 - \mu \nabla^2) \begin{bmatrix} S^{xx} \\ S^{yy} \\ S^{zz} \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} & T_{16} \\ T_{12} & T_{22} & T_{26} \\ T_{16} & T_{26} & T_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \end{bmatrix}\]

(4)

Here \(T_{ij}\) denote the transformed stiffness components and is defined as follows [17]:

\[T_{11} = (\mu + 2\alpha) + 2(\mu + 2\alpha) c^2 + 4\alpha\]
\[T_{12} = (\mu + 2\alpha - 2G) c^2 + T_{11} (s^4 + e^4)
\]
\[T_{22} = (\mu + 2\alpha + 2G) c^2 + (T_{11} + T_{12}) e^4\]
\[T_{16} = (\mu - 2\alpha - 2G) s^4 + (T_{11} + T_{12} - 2T_{16}) s^2 + 4\alpha e^4\]
\[T_{26} = (\mu - 2\alpha + 2G) s^2 + (T_{11} + T_{12} + 2T_{26}) s^2 + 4\alpha e^4\]
\[T_{66} = (\mu + 2\alpha - 2G) \]

(5)

in which \(c = \cos(\theta)\), \(s = \sin(\theta)\) and \(\theta\) is the orientation angle between the global and local Cartesian coordinates. Also \(T_{ij}\) are the components of stiffness tensor in the following form:
\[T_{11} = \frac{E_1}{1-(\nu_1\nu_2)} ; \quad T_{12} = \frac{v_1E_2}{1-(\nu_1\nu_2)} ; \quad T_{22} = \frac{E_2}{1-(\nu_1\nu_2)} \]
\[T_{16} = G_{12} \nu_2 ; \quad T_{26} = G_{12} \nu_1 \]

\[(6) \]

It is assumed that the graphene sheets are uniformly distributed within the plate thickness. To obtain mechanical properties of nanocomposite plate, a modified Halpin–Tsai model is employed [17]:

\[E_1=(\nu_1\nu_2)\frac{E_2G_{12}}{E_2-\nu_1\nu_2}\left(\frac{1-\nu_2^2}{E_2}\right) \]

\[G_{12}=(\nu_1\nu_2)\frac{E_2G_{12}}{E_2-\nu_1\nu_2}\left(\frac{1-\nu_2^2}{E_2}\right) \]

\[(7) \]

where, \(a, b, \) and \(c \) are the length, width and effective thickness of graphene sheet, respectively.

\[\lambda_1=(\frac{E_2}{E_2})^a-1 \]

\[\lambda_2=(\frac{E_2}{E_2})^a-1 \]

\[\lambda_3=(\frac{G_{12}^a}{G_{12}^a})-1 \]

\[(8) \]

where, superscripts \(G \) and \(m \) represent the graphene and matrix, respectively. \(E_1 \) and \(E_2 \) are the elasticity modulus in longitudinal and transverse directions, respectively. \(G_{12} \) is the shear modulus. \(V^a \) denotes the graphene sheet volume fraction and \(v_1, v_2, \) \(\rho \) are Poisson’s ratio and density, respectively. Also \(\eta_i \) \((i = 1, 2, 3) \) are called graphene efficiency parameters [18] to consider small scale effect. Now by substituting Equations (6) and (7) into Equation (5), it can be concluded that:

\[\sum_{i=1}^{3} \frac{2}{\lambda_i+1} \frac{2}{\lambda_i+1} \frac{2}{\lambda_i+1} \]

\[(9) \]

The resultant force and moment components per unit length based on nonlocal stress tensors are defined as follows:

\[N_{x1} = \int S_{x1}^d d\gamma , \quad M_{x1} = \int S_{x1}^m z d\gamma \]

\[(10) \]

\[N_{x2} = \int S_{x2}^d d\gamma , \quad M_{x2} = \int S_{x2}^m z d\gamma \]

\[N_{x3} = \int S_{x3}^d d\gamma , \quad M_{x3} = \int S_{x3}^m z d\gamma \]

\[(11) \]

The equation of motion can be derived using Hamilton’s principle as follows:

\[\int_0^\gamma (\partial U + \partial H - \delta K) d\gamma = 0 \]

\[(12) \]

Here \(U \) is the strain energy, \(V \) is the virtual work done by external applied forces and \(K \) is the kinetic energy. The variation of kinetic energy is obtained as follows:

\[\delta K = \frac{1}{2} \int \partial U + \partial V + \partial W \partial \gamma d\gamma \]

\[(13) \]

For the virtual strain energy, it can be mentioned that:

\[\delta U = \int_{x=0} \left(S_{x1}^d \delta \epsilon_{x1} + S_{x1}^m \delta \epsilon_{x1} + 2S_{xx}^m \delta \epsilon_{xx} \right) dx d\gamma \]

\[(14) \]
The mass moments of inertia are defined as follows:

\[I_i = \int \rho x^2 \, dA, \quad i = 0, 1, 2 \]

(15)

Using integration by parts and vanishing some terms, finally the motion equations can be expressed as follows [3]:

\[
\begin{align*}
\frac{\partial^2 N_{xx}}{\partial t^2} + \frac{\partial N_{yy}}{\partial t} + \frac{\partial N_{yy}}{\partial x} + \frac{\partial N_{xx}}{\partial y} &= \rho h \frac{\partial^2 N_{yy}}{\partial x^2} \\
\frac{\partial^2 M_{zx}}{\partial t^2} + 2 \frac{\partial^2 M_{zy}}{\partial t \partial x} + \frac{\partial M_{zy}}{\partial x} + \frac{\partial M_{zx}}{\partial y} &= \rho h \frac{\partial^2 M_{zy}}{\partial x \partial y} \\
\frac{\partial N_{yy}}{\partial x} + N_{xx} \frac{\partial N_{yy}}{\partial x} &= \rho h \frac{\partial^2 N_{yy}}{\partial x^2}
\end{align*}
\]

(a) (b) (c)

The solution of Equation (16c) for fully simply supported rectangular plates (SSSS) can be obtained using Navier’s method [19]. In this approach, the displacement is expanded in trigonometric series as

\[w(x, y, t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} \sin \left(\frac{m \pi x}{a} \right) \sin \left(\frac{n \pi y}{b} \right) e^{i \omega t} \]

(17)

In which, \(m \) and \(n \) are mode numbers. Substituting Equation (17) into Equation (16c), the final equation for SSSS condition can be concluded

\[
\begin{align*}
\frac{\partial^2}{\partial t^2} \left[h^2 \sin^2(\theta) (\sin^2(\theta) \frac{\partial^2}{\partial z^2} \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} \sin \left(\frac{m \pi x}{a} \right) \sin \left(\frac{n \pi y}{b} \right) e^{i \omega t} \right) \right] + 2\rho h \frac{\partial^2}{\partial t \partial x} \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} \sin \left(\frac{m \pi x}{a} \right) \sin \left(\frac{n \pi y}{b} \right) e^{i \omega t} \right) \\
+ 2\rho h \frac{\partial^2}{\partial t \partial y} \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} \sin \left(\frac{m \pi x}{a} \right) \sin \left(\frac{n \pi y}{b} \right) e^{i \omega t} \right) + 2\rho h \frac{\partial^2}{\partial x \partial y} \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} \sin \left(\frac{m \pi x}{a} \right) \sin \left(\frac{n \pi y}{b} \right) e^{i \omega t} \right)
\end{align*}
\]

(18)

Finally, it can be observed that the Equation (18) is in terms of \(\omega \), so the natural frequencies can be obtained. The Lévy method can be used to determine natural frequencies of rectangular plates for which two opposite edges are simply supported and the other two edges have any combination of Clamped (C), simply supported (S), and Free (F) boundary conditions. The solution is in the form of a single Fourier series as follow:

\[w(x, y, t) = W(y) \sin \left(\frac{m \pi x}{a} \right) e^{i \omega t} \]

(19)

that satisfies the simply supported boundary conditions as follows:

\[w = 0, M_n = -D_2 \frac{\partial^2 W}{\partial y^2} + D_4 \frac{\partial W}{\partial y} = 0 \]

(20)

Substituting Equation (19) into Equation (16c), it can be obtained:

\[\begin{align*}
\left[h^2 W \left(2 \cos^2(\theta) \sin^2(\theta) \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} \sin \left(\frac{m \pi x}{a} \right) \sin \left(\frac{n \pi y}{b} \right) e^{i \omega t} \right) \right] + 2\rho h \frac{\partial^2}{\partial t \partial x} \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} \sin \left(\frac{m \pi x}{a} \right) \sin \left(\frac{n \pi y}{b} \right) e^{i \omega t} \right) \\
+ 2\rho h \frac{\partial^2}{\partial t \partial y} \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} \sin \left(\frac{m \pi x}{a} \right) \sin \left(\frac{n \pi y}{b} \right) e^{i \omega t} \right) + 2\rho h \frac{\partial^2}{\partial x \partial y} \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} \sin \left(\frac{m \pi x}{a} \right) \sin \left(\frac{n \pi y}{b} \right) e^{i \omega t} \right)
\end{align*} \]

(21)

The ordinary differential equation (21) obtained in the Lévy method can be solved for the natural frequencies and mode shapes analytically. The form of the solution depends on the nature of the roots \(\delta \) of the characteristics equation is given by following expressions:

\[h^2 W \left(2 \cos^2(\theta) \sin^2(\theta) \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} \sin \left(\frac{m \pi x}{a} \right) \sin \left(\frac{n \pi y}{b} \right) e^{i \omega t} \right) \right] + 2\rho h \frac{\partial^2}{\partial t \partial x} \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} \sin \left(\frac{m \pi x}{a} \right) \sin \left(\frac{n \pi y}{b} \right) e^{i \omega t} \right) \\
+ 2\rho h \frac{\partial^2}{\partial t \partial y} \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} \sin \left(\frac{m \pi x}{a} \right) \sin \left(\frac{n \pi y}{b} \right) e^{i \omega t} \right) + 2\rho h \frac{\partial^2}{\partial x \partial y} \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} \sin \left(\frac{m \pi x}{a} \right) \sin \left(\frac{n \pi y}{b} \right) e^{i \omega t} \right)
\]

(22)

The general solution of Equation (22) is given by

\[W(y) = A \cos(\omega t) + B \sin(\omega t) + C \cos(\omega t) + D \sin(\omega t) \]

(23)

Also, \(A, B, C, D \) are integration constants, which are determined using the boundary conditions. However, we do not actually determine these constants. Instead, the values of \(\omega \) are determined by setting the determinant of the coefficient matrix \(A, B, C, D \) to zero. For SSSF boundary condition, it can be stated follows:

\[w = 0, M_n = -D_2 \frac{\partial^2 W}{\partial y^2} + D_4 \frac{\partial W}{\partial y} = 0 \]

(24)

For the solution of Equation (23) in this case, the boundary conditions in Equation (24) and yield \(A = C = 0 \). Setting the determinant of the coefficient matrix to zero, we obtain the following characteristic equation for the natural vibration of SSSF plates. For SSSC boundary condition, it can be mentioned below:
\[w = 0, \left(\frac{\partial w}{\partial y} \right) = 0 \text{ on } y = 0, b \]
(25)

Substitution of Equation (23) into Equation (25) yields the following characteristic equation:

\[2[1 - \cosh(R_b) \cos(R_g) b] + (R_g / R_g - R_z / R_g) \sinh(R_b) \sin(R_g) b = 0 \]
(26)

3. RESULTS AND DISCUSSIONS

In this part, in order to show the convergence and accuracy of the presented method, a comparison study for variation of natural frequencies ratio with length of a square nanoplate for various nonlocal parameter is illustrated in Figure 2. The results obtained from the developed analytical method has been compared with results of Pradhan and Phadikar [3]. The mechanical properties are supposed to be the same as, elastic modulus, \(E = 1.02 \text{Tpa} \), thickness of the graphene plate, \(h = 0.34 \text{nm} \), density, \(\rho = 2750 \text{kg/m}^3 \) and the Poisson’s ratio, \(v = 0.3 \). Results depicted in Figure 2 shows that an exceptional convergence and agreement with different value of nonlocal parameter is obtained.

Based on this fact, in order to examine the accuracy of the developed method, another comparison study for the effect of volume fraction on the dimensionless fundamental frequency of an CNT reinforce nanocomposite plate is summarized in Table 1. It is obvious that the present results have good agreement with literature. According to Table 2, it can be observed that as the nonlocal parameter increases, the stiffness of nanocomposite decreases thus the natural fundamental frequencies decrease. It can be clearly seen that the frequency is significantly increased by increasing a small amount of graphene nanosheets into the polymer matrix. Table 3 reports the natural fundamental frequencies of nanocomposites reinforced with graphene sheets for various orientation angles and volume fractions with SSSF boundary condition. Figure 3 shows that as the nonlocal parameters increases the natural frequencies decrease.

Schematic representation of a defect-free graphene sheet and with the presence of vacancy defects are shown in Figure 4. Based on the results obtained through molecular dynamics simulations reported by Hao et al. [20], dependency of Young’s modulus of a monolayer graphene sheet with monatomic vacancies to the concentration of monatomic vacancies could be realized. For the mechanical properties, it can be seen that Young’s moduli of defected graphene sheets feature a linear dependence on the defect concentration.

Figure 2. Natural frequencies ratio with the length of a square nanoplate for various nonlocal parameter obtained by numerical and analytical solutions

Table 1. Effect of volume fraction on the nondimensional fundamental frequency of CNT reinforced composite square plate for SSSS condition

<table>
<thead>
<tr>
<th>Volume Fraction</th>
<th>Modes (m, n)</th>
<th>Zhu et al. [21]</th>
<th>Alibeigloo [22]</th>
<th>Wu & Li [23]</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>(1,1)</td>
<td>19.223</td>
<td>19.168</td>
<td>19.155</td>
<td>19.486</td>
</tr>
<tr>
<td></td>
<td>(1,2)</td>
<td>23.408</td>
<td>23.270</td>
<td>23.273</td>
<td>23.387</td>
</tr>
<tr>
<td></td>
<td>(1,3)</td>
<td>34.669</td>
<td>34.054</td>
<td>34.038</td>
<td>34.049</td>
</tr>
<tr>
<td></td>
<td>(1,2)</td>
<td>25.295</td>
<td>25.199</td>
<td>25.188</td>
<td>25.466</td>
</tr>
<tr>
<td></td>
<td>(1,3)</td>
<td>36.267</td>
<td>35.679</td>
<td>35.667</td>
<td>35.808</td>
</tr>
<tr>
<td>0.17</td>
<td>(1,1)</td>
<td>23.679</td>
<td>23.622</td>
<td>23.607</td>
<td>23.994</td>
</tr>
<tr>
<td></td>
<td>(1,2)</td>
<td>28.987</td>
<td>28.825</td>
<td>28.810</td>
<td>28.927</td>
</tr>
<tr>
<td></td>
<td>(1,3)</td>
<td>43.165</td>
<td>42.386</td>
<td>42.367</td>
<td>42.357</td>
</tr>
</tbody>
</table>

Table 2. Natural frequencies (GHz) of nanocomposite plate for SSSS condition

<table>
<thead>
<tr>
<th>Volume Fraction</th>
<th>Mode numbers (m, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>Mode 1</td>
</tr>
<tr>
<td></td>
<td>(1,1) 158.491</td>
</tr>
<tr>
<td></td>
<td>(1,2) 222.219</td>
</tr>
<tr>
<td></td>
<td>(1,3) 239.861</td>
</tr>
<tr>
<td>1.00</td>
<td>Mode 1</td>
</tr>
<tr>
<td></td>
<td>(1,1) 154.720</td>
</tr>
<tr>
<td></td>
<td>(1,2) 216.931</td>
</tr>
<tr>
<td></td>
<td>(1,3) 234.155</td>
</tr>
<tr>
<td>2.00</td>
<td>Mode 1</td>
</tr>
<tr>
<td></td>
<td>(1,1) 151.205</td>
</tr>
<tr>
<td></td>
<td>(1,2) 212.003</td>
</tr>
<tr>
<td></td>
<td>(1,3) 228.836</td>
</tr>
<tr>
<td>3.00</td>
<td>Mode 1</td>
</tr>
<tr>
<td></td>
<td>(1,1) 147.920</td>
</tr>
<tr>
<td></td>
<td>(1,2) 207.397</td>
</tr>
<tr>
<td></td>
<td>(1,3) 223.846</td>
</tr>
</tbody>
</table>
TABLE 3. Natural frequencies (GHz) of nanocomposite plate for SSSF condition

| \(\mu (\text{nm}^2) \) | \(|v| \) | \(\hat{\theta} \) |
|-----------------|--------|--------|
| 0 | 0.03 | 158.491 398.644 401.822 633.965 |
| | 0.07 | 222.219 561.756 564.536 888.876 |
| | 0.11 | 239.861 599.105 603.165 959.454 |
| 1 | 0.03 | 154.720 376.118 379.116 579.358 |
| | 0.07 | 216.931 530.013 532.636 812.312 |
| | 0.11 | 234.155 565.251 569.082 876.811 |
| 2 | 0.03 | 151.205 357.024 359.870 536.799 |
| | 0.07 | 212.003 503.106 505.956 752.641 |
| | 0.11 | 228.836 536.556 540.192 812.401 |
| 3 | 0.03 | 147.920 340.571 343.285 502.423 |
| | 0.07 | 207.397 479.921 482.296 704.443 |
| | 0.11 | 223.846 511.829 515.298 760.376 |

Figure 3. Natural frequencies of nanocomposite with pristine graphene sheets and orientation angle \(\hat{\theta} = 0^\circ \) for various nonlocal parameter, volume fractions and SSSS boundary condition

Figure 4. Schematic representation of a) defect-free pristine graphene sheet b) presence of vacancy defect

Young’s modulus of a defect-free graphene sheet is 1.1 TPa when a thickness of 3.2 nm is used. The curve can be fitted into a linear function for monatomic vacancies as \(E^v = 1.8 \times 10^9 (0.994 - 0.027 \nu) \), which can be explained as that it contains two heptagons and two pentagons, which preserve interatomic \(\text{sp}^2 \) bonding, while monatomic vacancy breaks the integrity of pristine sheet that results in a higher formation energy in comparison with the nucleation energy for Stone-Wales dislocation. A linear fitting for the Stone-Wales dislocations fails here as it is hard to define the concentration. Figure 5 shows the MD simulation results as well as a fitted liner curve.

Figure 5. Young’s modulus of defective graphene sheet versus concentration of monovacancy defect percent

Figure 6. Effects of vacancy concentration in conjuring with the nonlocal parameter on natural frequencies of nanocomposite reinforced with defected graphene sheets for SSSS boundary condition.

4. CONCLUSION

In this work, an analytical investigation to examine the free vibration of nanocomposite reinforced by graphene sheets employing Eringen nonlocal elasticity theory was carried out. An effective analytical solution is developed for solving the complicated governing equations which is much more efficient in comparison to common numerical solutions. The accuracy of the presented method is examined, by comparing the results with literature in which a good agreement was observed. To show the novelty of the presented approach Eringen nonlocal theory as well as various orientation angles of defected and pristine graphene sheet reinforcement were considered together and solved base on an analytical method. It is also suggested that nonlocal parameter and volume fraction have a specific effect on natural frequencies, while
various orientation angles of graphene sheets in nanocomposites have a slight effect on natural frequencies. By increasing the graphene sheets volume fraction, nanocomposite gets stiffer and the frequencies increase significantly, while as the nonlocal parameter decreases the nanocomposite gets softer and the frequencies increase.

5. REFERENCES

Vibration Behavior of Nanocomposite Plate Reinforced by Pristine and Defective Graphene Sheets; an Analytical Approach

E. Allahyari, M. Asgari

Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran

PAPER INFO

Paper History:
Received 05 December 2017
Received in revised form 14 January 2018
Accepted 09 March 2018

Keywords:
Nanocomposite
Graphene Sheets
Free Vibration
Eringen Nonlocal Theory
Vacancy Defect
Analytical Solution

چکیده

ارتعاش آزاد ورق‌های کامپوزیت پلیمری که با نانورق‌های گرافن تجهیز شده‌اند با استفاده از تئوری الاستیسیت غیرمرحلی اریگن مورد بررسی قرار گرفته‌اند. روابط تئوری با یک‌نیتری اصل هیل‌تون و معادلات خطی و ساختاری چندپاره، اریگن‌ویککه نیز در آن رفتار دقیقی از نانوسازه تحت تأثیر دیگر نقاط غیرمرحلی می‌باشد استخراج شده است. به‌منظور به دست آوردن خواص مکانیکی، فرم ارتعاش، پایلهٔ هالفضایی-نتایج کرک گرفته شده است. معادلات پایه با استفاده از یک روش تحلیلی به دست آمده‌اند. دقت روش ارائه‌شده با مقایسه نتایج آن با دیگر مقالات بررسی شده است. مشاهده شده است. اثرات شرایط مرزی مختلف، درصد حجمی، راهی جهدگیری ورق‌های گرافن و پارامتر غیرمرحلی اریگن بر روی فرکانس نانوکامپوزیت مورد بررسی قرار گرفته‌اند. اثرات وجود عیوب شبکه در نانوروق بر روی رفتار کامپوزیت‌های نوبه‌نیز مورد بررسی قرار گرفته‌اند. نتایج نشان می‌دهد که با افزایش پارامتر غیرمرحلی فرکانس طبیعی تمایل به نشان دادن رفتاری نزولی دارد درحالیکه با افزایش درصد حجمی نانو گرافن، فرکانس‌های طبیعی به طور محضی افزایش می‌یابد. می‌توان نتیجه گرفت که روش‌های مختلف مغایر، اثرات محدودیت محاسباتی نسبی در نانوکامپوزیت‌ها مانند ناپایداری غیرمرحلی و پاره‌ای قابلیت خواص ایجاد شده با واسطه عیوب شبکه نه می‌باشد. نتیجه گرفت که نسخه‌هایی در فرکانس‌های طبیعی نانوکامپوزیت‌ها تجاوز‌ناپذیر داشت.