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The purpose of this research is to study the mechanical behavior of a micropump with clamped circular
diaphragm which is the main component of drug delivery systems. In this paper, the non-linear
governing equations of the circular microplate using Kirchhoff thin plate theory was been extracted
based on the modified couple stress (MCST) and classical (CT) theories. Then, the non-linear equation
of static deflection is solved using Step-by-Step Linearization Method (SSLM) in order to escape the
nonlinearity of the differential equation and Galerkin-based reduced-order model is applied to
investigate the dynamic motion of the microplate. Afterwards, static and dynamic stabilities of the
micropump have been studied based on both MCST and CT, then compared. Also, volumetric flow
rate of the micropump was been delved based on both theories and in entire research, presence of the
length scale parameter in modified couple stress theory brings this opportunity to study the size effect

on the mechanical behavior of the micropump.

doi: 10.5829/ije.2018.31.06¢.17

1. INTRODUCTION

Microelectromechanical systems (MEMS) technology
has been quickly growing since its arising in1980s as
sensors and actuators. They provide light weight, small
size and low-energy consumption [1]. It has been
rapidly growing in order to provide fabrication of
hundreds of accurate and miniaturized devices on a
single wafer [2, 3]. The MEMS technology is an
efficient technology in many related areas such as
automobile [4] and aerospace [5] industries for instance
in the smart mobile phones [6], biomedical [7] and so
on. Therefore, MEMS can be considered as a dominant
research field especially in biomedical applications.
Micropumps technology is one of the prominent
technologies in MEMS in medical arena. The
micropump is the main component of drug delivery
systems that provides the actuation mechanism to
deliver specific volumes of therapeutic agents/drugs
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from the reservoir [8]. Micropumps are classifiable into
mechanical and non-mechanical ones. The micropumps
which pump agents/drugs with the help of mechanical
movements are referred as mechanical micropumps
while in non-mechanical micropumps, there are no
mechanical moving parts in order to pump. For
activation of mechanical micropumps, a physical
actuator is needed [9]. Electrostatic actuation is one of
the actuation methods which is greatly considered
owing to its simplicity, high-flow output pressure, fast
response time and low power consumption [10]. Judy et
al. [11] fabricated the first electrostatic micropump
using surface micromachining technology. Zengerle et
al. [12] presented a micropump with the flow rate of 70
uL/min at applied voltage of 170 V. Machauf et al. [13]
reported the flow rate of 1 puL/min at applied voltage of
50 V. By using reduced order model of membrane, Liu
[14] reported the “pull-in phenomena” in electrostatic
micropump. Various parameters like radius, thickness,
initial gap, residual stress on pull-in voltage and pull in
position were delved [14]. A modeling of a micropump
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membrane with electrostatic actuator was developed by
Lil etal. [15].

Micro scale devices deal with forces which are
completely different from forces incorporating in the
conventional scale devices. This is because the size of a
physical system bears a significant effect on the
physical phenomena determining the dynamic behavior
of that system [16]. To design a precise and reliable
micropump, studying of the mechanical behavior of the
microplates is a crucial issue, including the static and
dynamic instabilities or Pull-in phenomenon. Pull-in
phenomenon is a discontinuity related to the interplay of
the elastic and electrostatic forces. Applying a potential
difference between a conducting structure and a ground
level, the structure deforms due to electrostatic forces.
By increasing the voltage the displacement reaches a
point that no stable equilibrium exists and leading to the
collapse and failure of the structure [17]. At pull-in
point, the elastic restoring force can no longer resist the
electrostatic force. The more increment of the voltage
will cause the structure to have dramatic displacement
jump [18]. Pull-in instability has been investigated by
several researchers owing to its indispensable role in the
design of MEMS structures [18-21].

Numerous experiments have been done in micro [16,
18] and nano-scale [22, 23] structures and it is perceived
from  hybrid  atomistic-continuum  model and
experimental results [24, 25]. There is a size effect in
micron and sub-micron scales which has a key role in
the mechanical behavior of the microstructures [26]. It
maintains that the classical theory of elasticity does not
touch the accurate and definite characterizations of
deformation occurrence due to not including the size
effect. As a consequence, deficiencies in classical theory
(CT) make them impossible to predict their behavior
precisely. Recently, a number of non-classical theories
such as strain gradient theories [27] nonlocal elasticity
theory [28, 29] and couple stress theory [30] have been
introduced and developed. The classical couple stress
theory was originated by the Cosserat brothers [31],
Toupin [30], Mindlin and Tiersten [32], to delve into the
size-dependent effects on mechanical behavior of the
microstructures. They utilized two length scale to
capture the size effects. Due to difficulties in
calculations of classical couple stress theory, Yang et
al. [33] has developed modified couple stress theory
(MCST) which provides a symmetric couple stress
tensor and only a single internal length-scale parameter
is involved instead of two classical lame’s constants.
For static analysing of isotropic micro-plates with
arbitrary shapes based on the modified couple stress
theory (MCST), Tsiatas attained a new Kirchhoff plate
model. It contains only one material length scale
parameter, which can capture the size effect [26].
Jomehzadeh et al. [34] presented the new model for
vibration analysis of rectangular and circular micro-

plates using a modified couple stress theory. Rashvand
et al. [1] derived a Kirchhoff plate model for the
dynamic analysis of a rectangular micro-plate using
MCST considering stretching effect.

The majority of the investigations around the
mechanical behavior of the micropumps are restricted to
classical theories which have not been concerned with
length scale parameter effect so they may lead to the
inaccurate predictions. Accordingly, the necessities of
studying the mechanical behavior of these devices by
non-classical theories become a crucial issue.

This paper investigates the mechanical behavior of
the micropump using higher order elasticity theories and
delves into the size-dependent behavior of the circular
microplate using the non-classical theory in comparison
to the classical one. For this aim, the differential
equations of a micropump are formulated by Kirchhoff
thin plate theory applying MCST. Then, the non-linear
equation of static deflection is solved using Step-by-
Step Linearization Method (SSLM). In order to escape
the nonlinearity of the differential equation and
Galerkin-based reduced-order model is applied to
investigate the dynamic motion of the microplate.
Afterwards, the pull-in instability of the micropump
subjected to an electrostatic force is studied based on
the MCST for different length scale ratios and compared
to results obtained by CT. In addition, volumetric flow
rate of the micropump which is a function of the
excitation frequency and amplitude is investigated using
MCST for different length scale ratios.

2. MODEL DESCRIPTION AND MATHEMATICAL
MODELLING

The mechanical micropumps have moving parts so a
physical actuator for the pumping process is required.
The most common mechanical micropumps are
displacement-typed micropumps that involve a pumping
chamber which is closed with a flexible diaphragm [8].
MEMS micropumps are generally modelled as two
circular microplates as shown in Figure 1. The circular
diaphragm undergoes more deflection in comparison to
rectangular or square microplates. As a consequence, it
has the most bending volume which makes it more
appropriate for micropump. The isotropic thin movable
upper plate with the thickness h, radius R, gap go ,
density p, shear modulus G, Young’s modulus E and

Poisson’s ratio ¥ is modelled using Kirchhoff plate
theory. The lower plate must be thick enough, as it has
no movement as the reference. The space between these
plates is filled with a dielectric substance like air. By
applying voltage the diaphragm vibrates.

An electrostatic force can be represented as follows:

50\/2

N ge—w (1)
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Figure 1. Schematic view of a circular electrostatically
actuated micropump

where, & is the dielectric (permittivity) of the air, V is

the applied voltage which consists of V}, as the bias DC
voltage and V, as the actuating voltage, go is the initial
gap between the diaphragm and the ground plate, t is the
physical time and w(r,t) is the deflection of the

diaphragm, defined to be positive downward. If _N_
2R

ratio is less than _1_, the plate can be assumed as a thin
20

plate and the Kirchhoff thin plate theory can be
utilized for studying mechanical behavior of the
microplate[17].

The strain energy density, in an isotropic elastic
material occupying a volume “-bounded by the
surface Q based on the modified couple stress theory
introduced by Yang et al. [33] is given as follows:

1 . .
HzE.LL(Gij SEj M Zij )dV‘ @
In which oy; is the Cauchy (classical) stress tensor, ¢; is
strain tensor, mj; is the deviatoric part of the symmetric

couple stress tensor and y;; is the symmetric part of the

curvature tensor. It should be noted that in the classical
theory, the strain energy density is the dot product of the
stress and strain tensors. However, in the case of the
modified couple stress theory the dot product of the
deviatoric part of the symmetric couple stress and the
symmetric part of the curvature tensors are added into
the classical formulation and all are expressed as
follows:

Oij =&k Ojj T2 e ®)
sij:%(ui,j"'uj,i) 4)
my; =240 ©)
7=30,+0,) ®)

1
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where, u; is the displacement vector, A and p are Lamé’s

constants, &; is the Kronecker delta, is a material
length-scale parameter, ¢ is the rotation vector and eij
is the permutation symbol [33].

Based on Kirchhoff thin plate theory, the
displacement components along the radial uy,
circumferential up and axial u, directions have the
relationship as follows:

u(r, H,Z,t):-zw .
ug(r, 9,Z,t):-2% "
u, (n0.z)=w (r,o,t) N

According to Equations (8), (9) and (10), in the
cylindrical coordinate system the strain tensor can be
expressed as:
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And curvature tensor can be written as:

d (5\/\/ j 1ow 0w ow
o(ow _low  ow _ow
orroo ror r20? or?
1ow 0w ow 106 (ow
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0 0 0
) . (13)
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By using and replacing Equations (3) and (8) in one
another, the stress tensor can be described as:

E
72(5" +Végg) Grro 0
1-v
o= Grro 2(589+Vgrr) 0=
0 0 0
ow
z—+
or
__E low | _2G i(ﬂj 0
1-v2 LT or or roo
V.
1 oA
r2 002 (14)
low |
_ E(ﬂ) __E | e, 0%
or(roo 1-v2| | 1 2w or?
r? 00°
0 0 0

Similarly, the couple stress tensor can be obtained as:
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where, G=E/2(1+v) is the shear modulus.

According to the Equations (14) and (15) the bending
moments by the classic stress tensor [35] and the couple
stress tensor respectively, can be achieved as follows:
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where, D is the classical bending rigidity of the plate

and D'is the contribution of rotation gradients to the
bending rigidity and respectively are given as:
3 2
Eh Df =G 2 = EL

[ — h=
P 12(1-v?) 2(1+v) 18)

Hamilton principle certifies, the actual motion
minimizes the difference of the kinetic energy and total
potential energy for a system with prescribed
configurations at t =[0,T] [36] as follows:

5J';[K ~(-w)]dt =0 (19)

In which K is kinetic energy I1is the strain energy and
W is the work of external loads of the microplate. The
kinetic energy of the circular diaphragm is given by:

2 2 2
1 au ou au
K== __r tal 22 -z
AR R RCIS @
where, p is the mass density of material. Considering
ot

energy of the diaphragm on the time interval [0, T] can
be expressed as:

0, the first variations of total Kkinetic

5[, kdt =—[ [ ph @Uz Sw d Tt 1)

The work done by the external forces in the form of

transverse Ioadingq“'g) and as a consequence, the first
variations of the work on the time interval [0, T] can be
achieved respectively as:

w et :Lq(r,@)N (r.0)dT 22)

5J.;Wdt - E jrq(r,e)(’)‘w drdt (23)
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By using and replacing Equations (2), (16) and (17) the
strain energy density can be written as:

082\/\/ 1ow 1 0w
I{M - [?ar r_zﬁ]

o1 ow o1l ow
oMo, L2 M mqm 2 W ym
ro ( ) " 6r(r 60) 00 (24)
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a2 00?2 a2

The first variation of the strain energy on the time
interval [0,T] can be obtained as:

2 2
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(25)

1
r’ 06°
By substituting Equations (21), (23) and (25) into
Equation (19), the governing equilibrium differential
equation of the transverse motion for a circular
microplate takes the form as:

azmg+2amg+iazMg,,flamgg+gaZMfg
or2 r a2 592 r or r orod
26M%7182M$716M;P+162M2297£6M,mg (26)
r2 00 r oro6 2 00 r o0 r or
2oMfp 1 My, @ M{gm:ph@
roor 2 a0 ol
Replacement of Equations (16) and (17) into (26) results
the governing equation of the micro-plate in terms of
the deflection is as follows:

(D +D )WV +ph‘;ﬂ2=q @7

Dependency of the deflection only on the radial position
r, originates from considering that the deflection of the
plate is symmetrical relative to circumferential

coordinate%:o. Consequently, the biharmonic

operator, v#in polar coordinate system for the
axisymmetric circular microplate is expressed as:
4 3 ~2
v4 = v2y2 :6_4+£6_3_i20_ %i (28)
o rord ror? or

Note that is V2 the Laplace operator:

2
vz 10 (29)
or2 ror

The clamped micropump’s boundary conditions are

given by:
M Rt)=0 ,w(R)=0 (30)
or

Hence, the governing equation of the transverse motion

for a circular microplate subjected to nonlinear
electrostatic force can be written as:

w __ay’

at  2(gg-w)? (3

(D +D[)V‘\IV +phaatiz+c

It should be noted that C is the equivalent damping of
the system which includes fluid damping, thermoelastic
damping and other internal dampings.

For convenience, the following non-dimensional
parameters are defined in order to transformation of
Equation (31) into non-dimensional form:

W=t TV el ==,
t w
(32)
/ph DgS’,w* E
t
Substituting Equation (32) into (31):
D+D’ .. oW oW V2
— — WW+ e ——— 33
5 ) at? e 2(1-w)? 33)
In which:
CR*
== 34
B - (34)

3. NUMERICAL SOLUTIONS

3. 1. Static Analysis The equation of the static
deflection of the circular diaphragm under bias DC
voltage is solved using step-by-step linearization
method (SSLM) due to the non-linearity of the equation
and complexity and time consumption of the solution

[3].

D+D' 4. VIV
(— )V‘\fvs=2(1_wsi)2 (35)

The SSLM is applied considering ws as the diaphragm

deflection due to the bias DC voltage V' which is
applied in the (i)th step. The amount of voltage rise in

each step is to a new value V'* and as a result of that
the deflection will be changed to Wt

VISV 8 and W' oW +y(f) (36)
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Therefore, Equation (35) for the (i+1)th step can be
written as follows:
D+D’ Vi

A\NAHl: _
( D )V S 2(1_\/\,’\;44)2

@37
To approach a desired accuracy, the small value of e
is assumed. Using the calculus of variation theory and
Taylor expansion considering first two terms and
neglecting the higher order terms of the series, the

following linearized equation in order to calculate ¥
can be obtained:

,\iz AiZ

D+D' .
Fw(F) =

( WV () - (38)

Ve _ &
(1_Ws) 2(1_Ws)
() can be approximated the function space in terms of
basis function as follows:

N
wn(F) = Zan @n (1) (39)

n=1

where, 20 (Dare the shape functions satisfying the
boundary conditions and a, are the unknown
coefficients evaluated by using Galerkin weighed
residual method in each step.

By substituting Equation (39) into Equation (38) and

multiplying by the weight function(”l(r)in Galerkin-
based weighed residual method and integrating the
result with respect to r over [0, 1], a set of algebraic
equations will be obtained as follows which leads to
determine ax:

N

Z(Kin )an =K i=1,..,N (40)
n=1
where:
¢
| L2V on (P () -

Kin:J‘0 V2 o f (41)
(l_ws)wn(r)fp. ()

In which, Ki, is including K™ and K which are

mechanical and electrical stiffness, respectively as

follows and applying voltage reduces mechanical

stiffness of the system.

1 /
ke = j({(%w“wn (o (r”)}jf #2)

[ 2

elec _ [ _V Yo (F) P (43)
K = jo[ 0 (r)}ir

v .
(o “

By solving above mentioned equations, the deflection of
the diaphragm can be determined at applied electrostatic
force.

3. 2. Dynamic Analysis For studying the dynamic
response of the microplate, a Galerkin based reduced
order model can be used [37]. Due to the nonlinear term
in Equation (33), direct use of the Galerkin method is
not applicable so it assumed as a forcing term and
integration over this term is repeated at each time step
[38]. Considering small enough time steps leads to a
proper convergence result.

The approximated solution for solving the dynamic
equation of the diaphragm deflection is defined as:

N
Vig (7.6 = dn On () (45)

n=1

In which 9 ®) are the generalized coordinates and

are shape functions satisfied all boundary ¢n(F)
conditions of clamped circular diaphragm. By
substituting Equation (45) into Equation (33) and
multiplying the weight functiong"l(r)in the Galerkin
method, and integrating the outcome over " =[01la
Galerkin-based reduced order model is generated as:

N

Z(M indn +Cinlin + Kinqn): Fi (Ws ,tA) i=1,2,..N (46)
n=1

where, M, C, K are mass, damping and stiffness
matrices, respectively and F determines the forcing
vector. All the mentioned elements are calculated as
follows:

1 A A A
Min =IO¢>. (P (F)F (47)
1 A A ~
Cin =], @ (Dpn (1 (48)
1 4
Kin = jomf)[(D*DD )v“(pn(f)}if (49)
P S
i —jo[qo. M )z}r (50)

By solving above mentioned equations, the response of
the circular diaphragm can be determined at any time.

3. 3. Volumetric Flow Rate Formulation
Recognizing the mechanical behavior of the micropump
provides this opportunity to investigate the volumetric
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flow rate of the micropump with the circular diaphragm.
Volumetric flow is a function of the excitation
frequency and the amplitude and can be calculated as
follows:

Q =V—xf (51)

1 A,
v =I 272w (Ff)  dF (52)
0

max

Considering that @=27f and W (\tJmax =20(F) gng
substituting Equation (52) into Equation (51) the
volumetric flow rate can be calculated as:

1
Q- L ap(f).of df (53)

where, ¥~ is the volume, Q is the volumetric flow and
f and @ are the ordinary and angular frequencies.

4. NUMERICAL RESULTS AND DISCUSSION

With the purpose of studying the mechanical behavior
of a micropump with a circular clamped diaphragm
actuated by electrostatic force the geometrical and
material properties of the microstructure is listed in
Tables 1 and 2 respectively.

The following axisymmetric shape function which
satisfies all boundary conditions for the circular
microplate is utilized:

p(f) = (F -D*(F +1)° (54)

TABLE 1. Geometrical properties of the diaphragm

Parameters Values
Radius (R) 230 pm
Thickness (h) 2.25um

-12 -1
Permittivity of air( ! ) 8.8541878x107" F m

Initial gap (go) 2 um

TABLE 2. Material properties of the diaphragm

Parameters Values
Young’s modulus (E) 169 GPa
Poisson’s ratio (V) 0.22
Density ( P ) 2330 kg m®

In this article, for evaluating the effect of length scale
parameter, length scale ratio () is introduced which is
the ratio of length scale parameter (¢) to the microplate
thickness (h):

0, =— (55)

4. 1. Static Response of the Diaphragm to Bias DC
Voltage In order to study the static behavior of the
diaphragm, different bias DC voltages are applied. As
the voltage increases the equivalent stiffness of the
microplate decreases and the diaphragm is more
deflected toward the ground plate until it causes the
displacement to reach a point that no stable equilibrium
exists and the diaphragm collapses on the ground plate.
This voltage is called static pull-in voltage which limits
the applied voltage.

Figure 2 depicts the non-dimensional center
deflection of the clamped microplate versus different
non-dimensional bias voltages using modified couple
stress theory for different length scale ratios. According
to the diagram, the predicted static pull-in voltage based
on MCST in all different length scale ratios is higher
than CT under the same conditions. In addition, as the
length scale ratio increases, the static pull-in voltage
reaches higher values which means that static pull-in
voltage of the micro structures is dramatically size
dependent. The obtained results based on CT have a
good agreement with those reported in literature [3].

4. 2. Dynamic Response of the Diaphragm to Step
DC Voltage In order to study the dynamic behavior
of the diaphragm a step DC voltage is applied to the
microplate. There is a limitation on the threshold of the
step DC voltage which is applied to the micropump on
account of dependency of the displacement to the
electrostatic force. The value of this voltage is known as
dynamic pull-in voltage which is as low as 90-92% of
static pull-in voltage [39].

o o o
B [+)] [24]
)

Non-dimensional Center Deflection
o
N

o)
0 2 4 6 8

Nan-dimensional DC Voltage
Figure 2. Static pull-in variation for different length scale
ratios based on modified couple stress theory in comparison to
classical theory
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The equation of the dynamic motion is converted to
a reduced order model and by applying fourth-order
Runge-Kutta method, the results can be integrated over
time. Figures 3 and 4 depict the phase portrait and time
history diagrams of the non-dimensional center
deflection of the diaphragm using modified couple
stress theory for different length scale ratios,
respectively. Continious mode of time history diagram
in Figure 4, turns into unstable mode in Figure 5 by low
voltage rising which is known as dynamic pull-in
instibility. Similar to static pull-in voltage, as the length
scale ratio increases, according to Figure 5, the dynamic
pull-in voltage reaches higher values and as shown in
the figure, the dynamic pull-in voltage is as low as 90-
92% of the static pull-in voltage due to the inertial
forces.

4. 3. Frequency Response of the Diaphragm
Figure 6 illustrates the frequency response of the
micropump for different length scale ratios based on
modified couple stress theory. It is clear that the
maximum deflection in all states occurs when the
frequency is equal to its natural frequency of the system.

—_— =0 (CT)

———— £,=0.09

o5 Vo638 - - (=02
e awmenas £=0.4

Non-dimensional Center Velocity

0.5

[¢]
[¢] 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Non-dimensional Center Deflection

Figure 3. Phase portraits of the clamped microplate for
different length scale ratios based on modified couple stress
theory in comparison to classical theory
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502 2 B\ W T ER
2 '-__\‘ iy YAy ERE Y
Y\ LA 1P
o % P ¥ N\
0 0.5 1 1.5 2 25 3

Non-dimensional Time
Figure 4. Time history of the diaphragm due to application of
a step DC voltage based on modified couple stress theory for
different length scale ratios in comparison to classical theory

In addition, it is deduced that under the same bias
voltage, as the length scale ratio arises, the natural
frequency increases and the central deflection decreases.
This is caused by increment of the system stiffness
using MCST. In other words, CT predicts more
deflection and less natural frequency than MCST.

The bias voltage effect on the frequency response of
the micropump for £,=0.2 in different applied bias DC
voltages is shown in Figure 7. According to the diagram
it is inferred that by increasing the bias voltage value,
the natural frequency decreases but the deflection
reaches higher values. This is because of the system
stiffness reduction due to the applying higher values of
the bias voltage.

4. 4. Volumetric Flow Rate Figure 8 depicts the
volumetric flow rate using modified couple stress theory
in various length scale ratios. According to the diagram
maximum flow rate for each state occurs in natural
frequency of the system.

Furthermore, in the same bias voltage, increment of the
length scale ratio reduces volumetric flow rate since
applying MCST causes the system to be stiffer. In other
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Figure 5. Dynamic pull-in variation for different length scale
ratios based on modified couple stress theory in comparison to
classical theory
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words, CT predicts more flow rate and less natural
frequency than MCST. The bias voltage effect on flow
rate of the micropump using modified couple stress
theory for £,=0.2 in different applied bias DC voltages is
shown in Figure 9.

It is deduced that in higher range of voltage the flow
rate is higher and the natural frequency is lower owing
to the system stiffness reduction due to the applying
higher values of bias voltage.
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Figure 7. Frequency response of the diaphragm for #:=0.2
based on modified couple stress theory in different bias DC
voltages
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Figure 8. Volumetric flow rate of the micropump using
modified couple stress theory in various length scale ratios in
comparison to classical theory
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Figure 9. Bias voltage effect on volumetric flow rate of the
micropump using modified couple stress theory for #:=0.2 in
different bias DC voltages

5. CONCLUSIONS

This paper studied the size dependent behavior of a
micropump with circular diaphragm using MCST. The
numerical results showed that both static and dynamic
pull-in voltages calculated by modified couple stress
theory was more than that calculated by the classical
ones. As the length-scale ratio was increased the pull-in
voltage raised. According to the results, for #,=0.2, the
value of pull-in voltage rise is 9.84% in static analysis
and 9.75% in dynamic analysis.The stiffness of the
microplate increased under MCST and as a result of
that in a particular bias voltage, as the length scale ratio
increased, the central deflection decreased. According to
the results for £,=0.2, decrement of deflection is 28.12%
under the same excitation voltage and the results
showed that bias voltage increment caused more
deflection and less natural frequency.The results
expressed that maximum volumetric flow rate occurred
in natural frequency of the system. Furthermore,
increment of length scale ratio reduced the volumetric
flow rate and for #,=0.2, decrement of volumetric flow
rate is 16.66% and the results showed that in higher
range of bias voltage the flow rate was higher and the
natural frequency was lower.

This paper has proved that the mechanical behaviour
of the micropump should be studied under modified
couple stress theory since the classical theory may lead
to inaccurate results in studying the mechanical
behaviour of the diaphragm with considerable material
length scale parameter. This becomes a big deal
especially in small scales.
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