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A B S T R A C T  
 

 

The purpose of this research is to study the mechanical behavior of a micropump with clamped circular 
diaphragm which is the main component of drug delivery systems. In this paper, the non-linear 

governing equations of the circular microplate using Kirchhoff thin plate theory was been extracted 

based on the modified couple stress (MCST) and classical (CT) theories. Then, the non-linear equation 
of static deflection is solved using Step-by-Step Linearization Method (SSLM) in order to escape the 

nonlinearity of the differential equation and Galerkin-based reduced-order model is applied to 

investigate the dynamic motion of the microplate. Afterwards, static and dynamic stabilities of the 
micropump have been studied based on both MCST and CT, then compared. Also, volumetric flow 

rate of the micropump was been delved based on both theories and in entire research, presence of the 
length scale parameter in modified couple stress theory brings this opportunity to study the size effect 

on the mechanical behavior of the micropump. 

doi: 10.5829/ije.2018.31.06c.17 
 

 
1. INTRODUCTION1 
 

Microelectromechanical systems (MEMS) technology 

has been quickly growing since its arising in1980s as 

sensors and actuators. They provide light weight, small 

size and low-energy consumption [1]. It has been 

rapidly growing in order to provide fabrication of 

hundreds of accurate and miniaturized devices on a 

single wafer [2, 3]. The MEMS technology is an 

efficient technology in many related areas such as 

automobile [4] and aerospace [5] industries for instance 

in the smart mobile phones [6], biomedical [7] and so 

on. Therefore, MEMS can be considered as a dominant 

research field especially in biomedical applications.  

Micropumps technology is one of the prominent 

technologies in MEMS in medical arena. The 

micropump is the main component of drug delivery 

systems that provides the actuation mechanism to 

deliver specific volumes of therapeutic agents/drugs 
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from the reservoir [8]. Micropumps are classifiable into 

mechanical and non-mechanical ones. The micropumps 

which pump agents/drugs with the help of mechanical 

movements are referred as mechanical micropumps 

while in non-mechanical micropumps, there are no 

mechanical moving parts in order to pump. For 

activation of mechanical micropumps, a physical 

actuator is needed [9]. Electrostatic actuation is one of 

the actuation methods which is greatly considered 

owing to its simplicity, high-flow output pressure, fast 

response time and low power consumption [10]. Judy et 

al. [11] fabricated the first electrostatic micropump 

using surface micromachining technology. Zengerle et 

al. [12] presented a micropump with the flow rate of 70 

μL/min at applied voltage of 170 V. Machauf et al. [13] 

reported the flow rate  of  1 μL/min at applied voltage of 

50 V. By using reduced order model of membrane, Liu 

[14] reported the “pull-in phenomena” in electrostatic 

micropump. Various parameters like radius, thickness, 

initial gap,  residual stress on pull-in voltage and pull in 

position were delved [14]. A modeling of a micropump 
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membrane with electrostatic actuator was developed by 

Lil et al. [15]. 

Micro scale devices deal with forces which are 

completely different from forces incorporating in the 

conventional scale devices. This is because the size of a 

physical system bears a significant effect on the 

physical phenomena determining the dynamic behavior 

of that system [16]. To design a precise and reliable 

micropump, studying of the mechanical behavior of the 

microplates is a crucial issue, including the static and 

dynamic instabilities or Pull-in phenomenon. Pull-in 

phenomenon is a discontinuity related to the interplay of 

the elastic and electrostatic forces. Applying a potential 

difference between a conducting structure and a ground 

level, the structure deforms due to electrostatic forces. 

By increasing the voltage the displacement reaches a 

point that no stable equilibrium exists and leading to the 

collapse and failure of the structure [17]. At pull-in 

point, the elastic restoring force can no longer resist the 

electrostatic force. The more increment of the voltage 

will cause the structure to have dramatic displacement 

jump [18]. Pull-in instability has been investigated by 

several researchers owing to its indispensable role in the 

design of MEMS structures [18-21]. 

Numerous experiments have been done in micro [16, 

18] and nano-scale [22, 23] structures and it is perceived 

from hybrid atomistic-continuum model and 

experimental results [24, 25]. There is a size effect in 

micron and sub-micron scales which has a key role in 

the mechanical behavior of the microstructures [26]. It 

maintains that the classical theory of elasticity does not 

touch the accurate and definite characterizations of 

deformation occurrence due to not including the size 

effect. As a consequence, deficiencies in classical theory 

(CT) make them impossible to predict their behavior 

precisely. Recently, a number of  non-classical theories 

such as strain gradient theories [27] nonlocal elasticity 

theory [28, 29] and couple stress theory [30] have been 

introduced and developed. The classical couple stress 

theory was originated by the Cosserat brothers [31], 

Toupin [30], Mindlin and Tiersten [32], to delve into the 

size-dependent effects on mechanical behavior of the 

microstructures. They utilized two length scale to 

capture the size effects. Due to difficulties in 

calculations of  classical couple stress theory, Yang et 

al. [33] has developed modified couple stress theory 

(MCST) which provides a symmetric couple stress 

tensor and only a single internal length-scale parameter 

is involved instead of two classical lame’s constants. 

For static analysing of isotropic micro-plates with 

arbitrary shapes based on the modified couple stress 

theory (MCST), Tsiatas attained a new Kirchhoff plate 

model. It contains only one material length scale 

parameter, which can capture the size effect [26]. 

Jomehzadeh et al. [34] presented the new model for 

vibration analysis of rectangular and circular micro-

plates using a modified couple stress theory. Rashvand 

et al. [1] derived  a Kirchhoff  plate model for the 

dynamic analysis of a rectangular micro-plate using 

MCST considering stretching effect. 

The majority of the investigations around the 

mechanical behavior of the micropumps are restricted to 

classical theories which have not been concerned with 

length scale parameter effect so they may lead to the 

inaccurate predictions. Accordingly, the necessities of 

studying the mechanical behavior of these devices by 

non-classical theories become a crucial issue. 

This paper investigates the mechanical behavior of 

the micropump using higher order elasticity theories and 

delves into the size-dependent behavior of the circular 

microplate using the non-classical theory in comparison 

to the classical one. For this aim, the differential 

equations of a micropump are formulated by Kirchhoff 

thin plate theory applying MCST. Then, the non-linear 

equation of static deflection is solved using Step-by-

Step Linearization Method (SSLM). In order to escape 

the nonlinearity of the differential equation and 

Galerkin-based reduced-order model is applied to 

investigate the dynamic motion of the microplate. 

Afterwards, the pull-in instability of the micropump 

subjected to an electrostatic force is studied based on 

the MCST for different length scale ratios and compared 

to results obtained by CT. In addition, volumetric flow 

rate of the micropump which is a function of the 

excitation frequency and amplitude is investigated using 

MCST for different length scale ratios. 
 

 

2. MODEL DESCRIPTION AND MATHEMATICAL 
MODELLING 
 

The mechanical micropumps have moving parts so a 

physical actuator for the pumping process is required. 

The most common mechanical micropumps are 

displacement-typed micropumps that involve a pumping 

chamber which is closed with a flexible diaphragm [8]. 

MEMS micropumps are generally modelled as two 

circular microplates as shown in Figure 1. The circular 

diaphragm undergoes more deflection in comparison to 

rectangular or square microplates. As a consequence, it 

has the most bending volume which makes it more 

appropriate for micropump. The isotropic thin movable 

upper plate with the thickness h, radius R, gap g0 , 

density 𝜌, shear modulus G, Young’s modulus E and 

Poisson’s ratio   is modelled using Kirchhoff  plate 

theory. The lower plate must be thick enough, as it has 

no movement as the reference. The space between these 

plates is filled with a dielectric substance like air. By 

applying voltage the diaphragm vibrates. 

An electrostatic force can be represented as follows: 

 (1) 
2

0
2

0

F(w,V)=   
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Figure 1. Schematic view of a circular electrostatically 

actuated micropump 
 

 

where, 0  is the dielectric (permittivity) of the air, V is 

the applied voltage which consists of Vb as the bias DC 

voltage and Va as the actuating voltage, g0 is the initial 

gap between the diaphragm and the ground plate, t is the 

physical time and w(r,t) is the deflection of the 

diaphragm, defined to be positive downward. If 
2

h

R

ratio is less than 1

20

, the plate can be assumed as a thin 

plate and the Kirchhoff  thin plate  theory can be 

utilized for studying mechanical behavior of the 

microplate[17]. 

The strain energy density, in an isotropic elastic 

material occupying a volume V bounded by the 

surface Ω based on the modified couple stress theory 

introduced by Yang et al. [33] is given as follows: 

 
1

= : : dV
2

ij ij ij ij
V

m     (2) 

In which ij is the Cauchy (classical) stress tensor, ij  is 

strain tensor, ijm is the deviatoric part of the symmetric 

couple stress tensor and ij is the symmetric part of the 

curvature tensor. It should be noted that in the classical 

theory, the strain energy density is the dot product of the 

stress and strain tensors. However, in the case of the 

modified couple stress theory the dot product of the 

deviatoric part of the symmetric couple stress and the 

symmetric part of the curvature tensors are added into 

the classical formulation and all are expressed as 

follows:  

= +2  ij kk ij ij   
 (3) 

, ,

1
= ( + )

2
ij i j j iu u  (4) 

2=2  ij ijm    (5) 

, ,

1
= ( + )

2
ij i j j i    (6) 

,

1
=  

2
i ijk k je u  (7) 

=      and       =
(1 )(1 2 ) 2(1 )

E E
 

    
 (8) 

where, ui is the displacement vector, λ and μ are Lamé’s 

constants, δij  is the Kronecker delta, is a material 

length‐scale parameter, i is the rotation vector and eijk 

is the permutation symbol [33]. 

Based on Kirchhoff thin plate theory, the 

displacement components along the radial ur, 

circumferential uθ and axial uz directions have the 

relationship as follows:  

( , , )
(r, ,z,t)=-z  r

w r t
u

r






  
(9) 

( , , )
(r, ,z,t)=-z  

w r t
u

r









  
(10) 

(r, ,z,t)= ( , , ) zu w r t 
 (11) 

According to Equations (8), (9) and (10), in the 

cylindrical coordinate system the strain tensor can be 

expressed as: 
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(12) 

And curvature tensor can be written as: 
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By using and replacing Equations (3) and (8) in one 

another, the stress tensor can be described as: 

2
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(14) 

Similarly, the couple stress tensor can be obtained as: 
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where, G=E/2(1+ν) is the shear modulus. 

According to the Equations (14) and (15) the bending 

moments by the classic stress tensor [35] and the couple 

stress tensor respectively, can be achieved as follows: 
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where, D is the classical bending rigidity of the plate 

and D is the contribution of rotation gradients to the 

bending rigidity and respectively are given as:    
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Hamilton principle certifies, the actual motion 

minimizes the difference of the kinetic energy and total 

potential energy for a system with prescribed 

configurations at t =[0,T] [36] as follows: 

0
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In which K is kinetic energy  is the strain energy and 

W is the work of external loads of the microplate. The 

kinetic energy of the circular diaphragm is given by: 
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where, ρ is the mass density of material. Considering
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be expressed as: 
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(21) 

The work done by  the external forces in the form of 

transverse loading ( , )q r  and as a consequence, the first 

variations of the work on the time interval  [0, T] can be 

achieved respectively as: 

( , ) ( , ) extW q r w r d 


 
 

(22) 

0 0
( , )  

T T

Wdt q r w d dt  


   
 

(23) 
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By using and replacing Equations (2), (16) and (17) the 

strain energy density can be written as: 

2 2

2 2 2

2 2

2 2 2

1 1 1
{   

2

1 1
2   

1 1 1
   }

rr

m m
r rr

m
r

w w w
M M

r rr r

w w
M M M

r r r r

w w w w
M d

r r r r r r

 



 





 

 



   
     

   

      
     

      

      
              



 

(24) 

The first variation of the strain energy on the time 

interval [0,T] can be obtained as: 

22

2 2 2
0 0

2 2

2

2

2

2 2

2 2 2
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1 2 2 1

1 1 1 2
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MM M
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r r r r r rr
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wd dt

r r

 


  
  

  

 




  

 






 
     

 

   
   

     

  
   

    

 
 

 

  

 

(25) 

By substituting Equations (21), (23) and (25) into 

Equation (19), the governing equilibrium differential 

equation of the transverse motion for a circular 

microplate takes the form as: 

2 22

2 2 2

22
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2 2 2 2

2 1 1 2

2 1 1 1 1
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M M MM M

r r r r r rr r
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  


  

  



   




   
    

    

   
   

      

   
   

   

 
(26) 

Replacement of Equations (16) and (17) into (26) results 

the governing equation of the micro‐plate in terms of 

the deflection is as follows: 

2
4

2
( )

w
D D w h q

t



   


 (27) 

Dependency of the deflection only on the radial position 

r, originates from considering that the deflection of the 

plate is symmetrical relative to circumferential 

coordinate 0
w







. Consequently, the biharmonic 

operator, 4 in polar coordinate system for the 

axisymmetric circular microplate is expressed as: 

4 3 2
4 2 2

4 3 2 2 3

2 1 1

r rr r r r r

   
       

  
 (28) 

Note that is 2  the Laplace operator: 

2
2

2

1

r rr

 
  


 (29) 

The clamped micropump’s boundary conditions are 

given by: 

( , ) 0    , w(R,t)=0
w

R t
r





 (30) 

Hence, the governing equation of the transverse motion 

for a circular microplate subjected to nonlinear 

electrostatic force can be written as: 

22
4 0

2 2
0

( )
2( )

Vw w
D D w h C

tt g w




 
    

 
 (31) 

It should be noted that C is the equivalent damping of 

the system which includes fluid damping, thermoelastic 

damping and other internal dampings. 

For convenience, the following non-dimensional 

parameters are defined in order to transformation of 

Equation (31) into non-dimensional form: 

* * *
0

3
* 2 * 0

2 *
0

ˆ ˆˆ ˆˆ , , , , ,

1 1
, , *

w r V t
w r V t

g R V t

Dgh
t R V

D R t











    

  

 

(32) 

Substituting Equation (32) into (31):  

2 2
4

2 2

ˆˆ ˆ
ˆ( )

ˆˆ ˆ2(1 )

D D w w V
w

D tt w


  
   

 
 

(33) 

In which: 

4

*

CR

Dt
 

 
(34) 

 
 
3. NUMERICAL SOLUTIONS  
 

3. 1. Static Analysis    The equation of the static 

deflection of the circular diaphragm under bias DC 

voltage is solved using step-by-step linearization 

method (SSLM) due to the non-linearity of the equation 

and complexity and time consumption of the solution 

[3]. 

2

4

2

ˆ
ˆ( )

ˆ2(1 )

i
i
s i

s

D D V
w

D w


 

  
(35) 

The SSLM is applied considering 
i
sw as the diaphragm 

deflection due to the bias DC voltage 
iV   which is 

applied in the (i)th step. The amount of voltage rise in 

each step is V to a new value  
1iV 
and as a result of that 

the deflection will be changed to 
1i

sw 

: 

1 1ˆ ˆ ( )ˆ ˆˆ ˆi i i iV V wV w r                and            (36) 
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Therefore, Equation (35) for the (i+1)th step can be 

written as follows: 

21
4 1

1 2

ˆ
ˆ( )

ˆ2(1 )

i
i
s i

s

D D V
w

D w







 


 

(37) 

To approach a desired accuracy, the small value of V

is assumed. Using the calculus of variation theory and 

Taylor expansion considering first two terms and 

neglecting the higher order terms of the series, the 

following linearized equation in order to calculate   

can be obtained: 

2 2

4

3 2

ˆ ˆ
ˆˆ ˆ( ) ( ) ( )

ˆ ˆ(1 ) 2(1 )

i i

i i
s s

D D V V
r r V

D w w
  


  

 
 

(38) 

( )r can be approximated the function space in terms of 

basis function as follows: 

1

ˆ ˆ( ) ( )

N

n n n

n

r a r 




 

(39) 

where, ( )n r are the shape functions satisfying the 

boundary conditions and an are the unknown 

coefficients evaluated by using Galerkin weighed 

residual method in each step. 

By substituting Equation (39) into Equation (38) and 

multiplying by the weight function ( )i r in Galerkin-

based weighed residual method and integrating the 

result with respect to r over  [0, 1], a set of algebraic 

equations will be obtained as follows which leads to 

determine an: 

 
1

           i=1,...,N

N

in n i

n

K a F




 

(40) 

where: 

4

1

2
0

3

ˆ ˆ( ) ( ) ( )

ˆ
ˆ

ˆ ˆ( ) ( )
ˆ(1 )

n i

in

n i

s

D D
r r

D
K dr

V
r r

w

 

 

 
  

 
  

 
  



 

(41) 

In which, Kin is including Kmech and Kelec which are 

mechanical and electrical stiffness, respectively as 

follows and  applying voltage reduces mechanical 

stiffness of the system. 

1
4

0

ˆ ˆ ˆ( ) ( ) ( )mech
in n i

D D
K r r dr

D
 

 
  

 
 


 

(42) 

21

3
0

ˆ
ˆ ˆ ˆ( ) ( )

ˆ(1 )

elec
in n i

s

V
K r r dr

w
 

 
  

  


 

(43) 

1

2
0

ˆ ˆ
ˆ ˆ( )

ˆ(1 )

i

i i

s

V V
F r dr

w




 
  

  


 

(44) 

By solving above mentioned equations, the deflection of 

the diaphragm can be determined at applied electrostatic 

force. 
 

3. 2. Dynamic Analysis       For studying the dynamic 

response of the microplate, a Galerkin based reduced 

order model can be used [37]. Due to the nonlinear term 

in Equation (33), direct use of the Galerkin method is 

not applicable so it assumed as a forcing term and 

integration over this term is repeated at each time step 

[38]. Considering small enough time steps leads to a 

proper convergence result. 

The approximated solution for solving the dynamic 

equation of the diaphragm deflection is defined as:    

1

ˆ ˆˆ ˆˆ ( , ) ( ) ( )

N

d n n

n

w r t q t r




 

(45) 

In which ( )nq t are the generalized coordinates and 

are shape functions satisfied all boundary ( )n r

conditions of clamped circular diaphragm. By 

substituting Equation (45) into Equation (33) and 

multiplying the weight function ( )i r in the Galerkin 

method, and integrating the outcome over [0 1]r  a 

Galerkin-based reduced order model is generated as: 

   
1

ˆˆ ,     i=1,2,...N

N

in n in n in n i s

n

M q C q K q F w t



  
 

(46) 

where, M, C, K are mass, damping and stiffness 

matrices, respectively and F determines the forcing 

vector. All the mentioned elements are calculated as 

follows: 

1

0

ˆ ˆ ˆ( ) ( )in i nM r r dr  
 

(47) 

1

0

ˆ ˆ ˆ( ) ( )in i nC r r dr   
 

(48) 

1
4

0

ˆ ˆ ˆ( ) ( ) ( )in i n

D D
K r r dr

D
 

 
  

 
 


 

(49) 

21

2
0

ˆ
ˆ ˆ( )

ˆ2(1 )
i i

V
F r dr

w

 

  
  


 

(50) 

By solving above mentioned equations, the response of 

the circular diaphragm can be determined at any time. 

 
3. 3. Volumetric Flow Rate Formulation   
Recognizing the mechanical behavior of the micropump 

provides this opportunity to investigate the volumetric 
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flow rate of the micropump with the circular diaphragm. 

Volumetric flow is a function of the excitation 

frequency and the amplitude and can be calculated as 

follows: 

ˆQ V f   
(51) 

1

0 max

ˆˆ ˆ ˆˆ2 . ( , )V r w r t dr 
 

(52) 

Considering that 2 f  and max( , ) ( )w r t a r and 

substituting Equation (52) into Equation (51) the 

volumetric flow rate can be calculated as: 

1

0

ˆ ˆ ˆ ˆ( ). .  Q a r r dr  
 

(53) 

where, V is the volume, Q is the volumetric flow and 

f  and   are the ordinary and angular frequencies. 

 

 
4. NUMERICAL RESULTS AND DISCUSSION 

 
With the purpose of studying the mechanical behavior 

of a micropump with a circular clamped diaphragm 

actuated by electrostatic force the geometrical and 

material properties of the microstructure is listed in 

Tables 1 and 2 respectively. 

The following axisymmetric shape function which 

satisfies all boundary conditions for the circular 

microplate is utilized: 

2 2ˆ ˆ ˆ( ) ( 1) ( 1)r r r     
(54) 

 

 

TABLE 1. Geometrical properties of the diaphragm 

Parameters   Values 

Radius (R) 230 µm 

Thickness (h) 2.25 µm 

Permittivity of air( 0  (  
8.8541878×10-12 F m-1 

Initial gap (g0) 2 µm 

 

 

 

TABLE 2. Material properties of the diaphragm 

Parameters   Values 

Young’s modulus (E) 169 GPa 

Poisson’s ratio ( ) 0.22 

Density (


 (  2330 kg m-3 

 

In this article, for evaluating the effect of length scale 

parameter, length scale ratio (𝓁r) is introduced which is 

the ratio of length scale parameter (𝓁) to the microplate 

thickness (h): 

r
h


 

(55) 

 

4. 1. Static Response of the Diaphragm to Bias DC 
Voltage       In order to study the static behavior of the 

diaphragm, different bias DC voltages are applied. As 

the voltage increases the equivalent stiffness of the 

microplate decreases and the diaphragm is more 

deflected toward the ground plate until it causes the 

displacement to reach a point that no stable equilibrium 

exists and the diaphragm collapses on the ground plate. 

This voltage is called static pull-in voltage which limits 

the applied voltage. 

Figure 2 depicts the non-dimensional center 

deflection of the clamped microplate versus different 

non-dimensional bias voltages using modified couple 

stress theory for different length scale ratios. According 

to the diagram, the predicted static pull-in voltage based 

on MCST in all different length scale ratios is higher 

than CT under the same conditions. In addition, as the 

length scale ratio increases, the static pull-in voltage 

reaches higher values which means that static pull-in 

voltage of the micro structures is dramatically size 

dependent. The obtained results based on CT have a 

good agreement with those reported in literature [3]. 
 

4. 2. Dynamic Response of the Diaphragm to Step 
DC Voltage      In order to study the dynamic behavior 

of the diaphragm a step DC voltage is applied to the 

microplate. There is a limitation on the threshold of the 

step DC voltage which is applied to the micropump on 

account of dependency of the displacement to the 

electrostatic force. The value of this voltage is known as 

dynamic pull-in voltage which is as low as 90-92% of 

static pull-in voltage [39]. 
 

 

 
Figure 2. Static pull-in variation for different length scale 

ratios based on modified couple stress theory in comparison to 

classical theory 
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The equation of the dynamic motion is converted to 

a reduced order model and by applying fourth-order 

Runge-Kutta method, the results can be integrated over 

time. Figures 3 and 4 depict the phase portrait and time 

history diagrams of the non-dimensional center 

deflection of the diaphragm using modified couple 

stress theory for different length scale ratios, 

respectively. Continious mode of time history diagram 

in Figure 4, turns into unstable mode in Figure 5 by low 

voltage rising which is known as dynamic pull-in 

instibility. Similar to static pull-in voltage, as the length 

scale ratio increases, according to Figure 5, the dynamic 

pull-in voltage reaches higher values and as shown in 

the figure, the dynamic pull-in voltage is as low as 90-

92% of the static pull-in voltage due to the inertial 

forces. 
 

4. 3. Frequency Response of the Diaphragm    

Figure 6 illustrates the frequency response of the 

micropump for different length scale ratios based on 

modified couple stress theory. It is clear that the 

maximum deflection in all states occurs when the 

frequency is equal to its natural frequency of the system. 
 

 

 
Figure 3. Phase portraits of the clamped microplate for 

different length scale ratios based on modified couple stress 

theory in comparison to classical theory 
 

 

 
Figure 4. Time history of the diaphragm due to application of 

a step DC voltage based on modified couple stress theory for 

different length scale ratios in comparison to classical theory 

In addition, it is deduced that under the same bias 

voltage, as the length scale ratio arises, the natural 

frequency increases and the central deflection decreases. 

This is caused by increment of the system stiffness 

using MCST. In other words, CT predicts more 

deflection and less natural frequency than MCST.  

The bias voltage effect on the frequency response of 

the micropump for 𝓁r=0.2 in different applied bias DC 

voltages is shown in Figure 7. According to the diagram 

it is inferred that by increasing the bias voltage value, 

the natural frequency decreases but the deflection 

reaches higher values. This is because of the system 

stiffness reduction due to the applying higher values of 

the bias voltage. 

 

4. 4. Volumetric Flow Rate       Figure 8 depicts the 

volumetric flow rate using modified couple stress theory 

in various length scale ratios. According to the diagram 

maximum flow rate for each state occurs in natural 

frequency of the system.  

Furthermore, in the same bias voltage, increment of the 

length scale ratio reduces volumetric flow rate since 

applying MCST causes the system to be stiffer.  In other 
 
 

 
Figure 5. Dynamic pull-in variation for different length scale 

ratios based on modified couple stress theory in comparison to 

classical theory 
 
 

 
Figure 6. Frequency response of the diaphragm for different 

length scale ratios based on modified couple stress theory in 

comparison to classical theory 
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words, CT predicts more flow rate and less natural 

frequency than MCST. The bias voltage effect on flow 

rate of the micropump using modified couple stress 

theory for 𝓁r=0.2 in different applied bias DC voltages is 

shown in Figure 9.  
It is deduced that in higher range of voltage the flow 

rate is higher and the natural frequency is lower owing 

to the system stiffness reduction due to the applying 

higher values of bias voltage. 
 

 

 
Figure 7. Frequency response of the diaphragm for 𝓁r=0.2 

based on modified couple stress theory in different bias DC 

voltages 
 

 

 
Figure 8. Volumetric flow rate of the micropump using 

modified couple stress theory in various length scale ratios in 

comparison to classical theory 
 

 

 
Figure 9. Bias voltage effect on volumetric flow rate of the 

micropump using modified couple stress theory for 𝓁r=0.2 in 

different bias DC voltages 

5. CONCLUSIONS 
 

This paper studied the size dependent behavior of a 

micropump with circular diaphragm using MCST. The 

numerical results showed that both static and dynamic 

pull-in voltages calculated by modified couple stress 

theory was more than that calculated by the classical 

ones. As the length-scale ratio was increased the pull-in 

voltage raised. According to the results, for 𝓁r=0.2, the 

value of pull-in voltage rise is 9.84% in static analysis 

and 9.75% in dynamic analysis.The stiffness of the 

microplate increased  under  MCST and as a result of 

that in a particular bias voltage, as the length scale ratio 

increased, the central deflection decreased. According to 

the results for 𝓁r=0.2, decrement of deflection is 28.12% 

under the same excitation voltage and the results 

showed that bias voltage increment caused more 

deflection and less natural frequency.The results 

expressed that maximum volumetric flow rate occurred 

in natural frequency of the system. Furthermore, 

increment of length scale ratio reduced the volumetric 

flow rate and for 𝓁r=0.2, decrement of volumetric flow 

rate is 16.66% and the results showed that  in higher 

range of bias voltage the flow rate was higher and the 

natural frequency was lower. 

This paper has proved that the mechanical behaviour 

of the micropump should be studied under modified 

couple stress theory since the classical theory  may lead 

to inaccurate results in studying the mechanical 

behaviour of the diaphragm with considerable material 

length scale parameter. This becomes a big deal 

especially in small scales. 
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چكيده
 

 

تمهای لی سیسچسبیده است که جز اصهدف از این تحقیق مطالعه رفتار مکانیکی یک میکروپمپ با دیافراگم دایره ای 

ت نازک صفحا تحویل دارو است. در این مقاله معادلات غیرخطی حاکم بر میکروپلیت دایره ای با استفاده از تئوری

ادله ( استخراج شده است.سپس معCTهای کلاسیک )( و تئوریMCSTکیرشهف، بر اساس فشار دوگانه اصلاح شده )

عادله مشود تا از غیرخطی بودن ( حل میSSLMغیرخطی انحراف استاتیک با استفاده از روش خطی گام به گام )

 تفاده قراررد اسدیفرانسیل بگریزیم و مدل کاهش مرتبه بر مبنای روش گالرکین برای بررسی حرکت پویای میکروپلیت مو

و سپس  مورد بررسی قرار گرفت CTو  MCSTس از آن ثبات استاتیکی و دینامیکی میکروپمپ بر اساس می گیرد. پ

ر ارامتپمقایسه شد.همچنین میزان جریان حجمی میکروپمپ بر اساس تئوریها و کل پژوهش بررسی شده است. حضور 

را  ی میکروپمپکانیکر اندازه بر رفتار ممقیاس طول در نظریه فشار دوگانه اصلاح شده این فرصت رابوجود می آورد که اث

  بررسی کنیم. 
doi: 10.5829/ije.2018.31.06c.17 

 

 
 

 

 
 

 
 

 
 


