The Effect of the Variation of Volume Flow Rate on the Thermal Parameters of a Solar Air Collector with a Single Pass of Air: Case Study for Laghouat, Algeria


Laboratory of Mechanic, Faculty of Technology, University of Laghouat, Algeria


The effect of the volume flow rate of the heat transfer fluid (air) on the thermal parameters of the solar air collector with a single air pass without using fins under the absorbing plate have been investigated experimentally and theoretically. We use a new design of solar air collector which aims to optimize these parameters in the region cited above. Our solar air collector was realized at the mechanical workshop at the University of Laghouat, Algeria. We chose five different volume flow rates for five different days. This study shows the evolution of the thermal parameters of the solar air collector as function of the local solar time (Lst) such as: absorber temperature, temperature of the bottom plate, outlet temperature, ambient temperature, solar irradiation intensity and efficiency for a tilt angle of solar collector equal 36.7o. We observe clearly that the daily efficiency and the outlet temperature of our solar air collector increase with increasing of the flow rate (η =8.72% ~ 28.82 % , 60oC ~ 70 oC) exceptly for flow rates 3 and 4 (partial sky condition). The average temperature of bottom plate,  the transparent cover and absorber temperature decrease such as: (73 °C ~ 64 °C, 66.5°C ~ 45.09°C, 128°C ~ 124°C) when the volume flow rate is increasing.We observe a good agreement between the values obtained theoretically and those obtained experimentally except for the volume flow rates 3 and 4 (partial sky condition).


1.     Richter, C., Lincot, D. and Gueymard, C.A., "Solar energy, New york, Springer,  (2013).

2.     Garg, H. and Adhikari, R., "Performance evaluation of a single solar air heater with n‐subcollectors connected in different combinations", International Journal of Energy Research,  Vol. 23, No. 5, (1999), 403-414.

3.     Belusko, M., Saman, W. and Bruno, F., "Performance of jet impingement in unglazed air collectors", Solar Energy,  Vol. 82, No. 5, (2008), 389-398.

4.     Duffie, J.A. and Beckman, W.A., "Solar engineering of thermal processes",  New York, 2th Edn. Wiley, (1980).

5.     Koyuncu, T., "Performance of various design of solar air heaters for crop drying applications", Renewable Energy,  Vol. 31, No. 7, (2006), 1073-1088.

6.     Ratti, C. and Mujumdar, A., "Solar drying of foods: Modeling and numerical simulation", Solar Energy,  Vol. 60, No. 3-4, (1997), 151-157.

7.     Khamforoush, M., Mirfatah, S. and Hatami, T., "Application of three types of dryers namely tunnel, fluidized bed, and fluidized bed with microwave for drying of celery, corn, and sour cherry: Experiments and modeling", International Journal of Engineering-Transactions B: Applications,  Vol. 27, No. 5, (2014), 667.

8.     Yeh, H.-M. and Lin, T.-T., "The effect of collector aspect ratio on the collector efficiency of flat-plate solar air heaters", Energy,  Vol. 20, No. 10, (1995), 1041-1047.

9.     Chabane, F., Moummi, N., Bensahal, D. and Brima, A., "Heat transfer coefficient and thermal losses of solar collector and nusselt number correlation for rectangular solar air heater duct with longitudinal fins hold under the absorber plate", Applied Solar Energy,  Vol. 50, No. 1, (2014), 19-26.

10.   Ghasemi, S., Hatami, M. and Ganji, D., "Analytical thermal analysis of air-heating solar collectors", Journal of Mechanical Science and Technology,  Vol. 27, No. 11, (2013), 3525-3530.

11.   Karim, M.A. and Hawlader, M., "Performance investigation of flat plate, v-corrugated and finned air collectors", Energy,  Vol. 31, No. 4, (2006), 452-470.

12.   Nowzari, R., Aldabbagh, L. and Egelioglu, F., "Single and double pass solar air heaters with partially perforated cover and packed mesh", Energy,  Vol. 73, (2014), 694-702.

13.   Kumar, S. and Saini, R., "Cfd based performance analysis of a solar air heater duct provided with artificial roughness", Renewable Energy,  Vol. 34, No. 5, (2009), 1285-1291.

14.   Idlimam, A., "Etude théorique d’un système de séchage des peaux et des cuirs pour la région de marrakech constitué d’une serre agricole jouant le rôle de générateur solaire d’air chaud et d’un séchoir conventionnel’", These de 3eme cycle, Ecole Normale Supérieure, Marrakech, Maroc,  (1990).

15.   Ajay, K. and Kundan, L., "Performance evaluation of nanofluid (al2o3/h2o-c2h6o2) based parabolic solar collector using both experimental and cfd techniques", International Journal of Engineering-Transactions A: Basics,  Vol. 29, No. 4, (2016), 572.

16.   Kays, W.M., "Convective heat and mass transfer, Tata McGraw-Hill Education,  (2012).

17.   Youcef‐Ali, S. and Desmons, J., "Simulation of a new concept of an indirect solar dryer equipped with offset rectangular plate fin absorber‐plate", International journal of energy research,  Vol. 29, No. 4, (2005), 317-334.

18.   Chabane, F., "Modélisation des paramètres de la conversion thermique de l'énergie solaire", Université Mohamed Khider-Biskra, Applied Solar Energy,  Vol. 50, No. 1, (2014), 19-26.

19.   Kasaeian, A., Mobarakeh, M.D., Golzari, S. and Akhlaghi, M., "Energy and exergy analysis of air PV/T collector of forced convection with and without glass cover", International Journal of Engineering-Transactions B: Applications,  Vol. 26, No. 8, (2013), 913.

20.   Klein, S. and Beckman, W., "A general design method for closed-loop solar energy systems", Solar Energy,  Vol. 22, No. 3, (1979), 269-282.

21.   Goudarzi, K., Asadi, Y.A.S., Shojaeizadeh, E. and Hajipour, A., "Experimental investigation of thermal performance in an advanced solar collector with helical tube",  International Journal of Engineering, Transaction A: Basics,  Vol. 27, No. 7, (2014), 1149-1154